Completion of Python files
This commit is contained in:
31
Code/Day 3_Multiple_Linear_Regression.py
Normal file
31
Code/Day 3_Multiple_Linear_Regression.py
Normal file
@ -0,0 +1,31 @@
|
||||
# Importing the libraries
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
# Importing the dataset
|
||||
dataset = pd.read_csv('../datasets/50_Startups.csv')
|
||||
X = dataset.iloc[ : , :-1].values
|
||||
Y = dataset.iloc[ : , 4 ].values
|
||||
|
||||
# Encoding Categorical data
|
||||
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
|
||||
labelencoder = LabelEncoder()
|
||||
X[: , 3] = labelencoder.fit_transform(X[ : , 3])
|
||||
onehotencoder = OneHotEncoder(categorical_features = [3])
|
||||
X = onehotencoder.fit_transform(X).toarray()
|
||||
|
||||
# Avoiding Dummy Variable Trap
|
||||
X = X[: , 1:]
|
||||
|
||||
# Splitting the dataset into the Training set and Test set
|
||||
from sklearn.cross_validation import train_test_split
|
||||
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)
|
||||
|
||||
# Fitting Multiple Linear Regression to the Training set
|
||||
from sklearn.linear_model import LinearRegression
|
||||
regressor = LinearRegression()
|
||||
regressor.fit(X_train, Y_train)
|
||||
|
||||
# Predicting the Test set results
|
||||
y_pred = regressor.predict(X_test)
|
||||
|
||||
Reference in New Issue
Block a user