Completion of Python files
This commit is contained in:
32
Code/Day 6_Logistic_Regression.py
Normal file
32
Code/Day 6_Logistic_Regression.py
Normal file
@ -0,0 +1,32 @@
|
||||
# Importing the Libraries
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
|
||||
# Importing the dataset
|
||||
dataset = pd.read_csv('../datasets/Social_Network_Ads.csv')
|
||||
X = dataset.iloc[:, [2, 3]].values
|
||||
y = dataset.iloc[:, 4].values
|
||||
|
||||
# Splitting the dataset into the Training set and Test set
|
||||
from sklearn.cross_validation import train_test_split
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
|
||||
|
||||
# Feature Scaling
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
sc = StandardScaler()
|
||||
X_train = sc.fit_transform(X_train)
|
||||
X_test = sc.transform(X_test)
|
||||
|
||||
# Fitting Logistic Regression to the Training set
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
classifier = LogisticRegression()
|
||||
classifier.fit(X_train, y_train)
|
||||
|
||||
# Predicting the Test set results
|
||||
y_pred = classifier.predict(X_test)
|
||||
|
||||
# Making the Confusion Matrix
|
||||
from sklearn.metrics import confusion_matrix
|
||||
cm = confusion_matrix(y_test, y_pred)
|
||||
|
||||
Reference in New Issue
Block a user