diff --git a/Code/Day 3_Multiple_Linear_Regression.ipynb b/Code/Day 3_Multiple_Linear_Regression.ipynb index 90888bd..374b3d6 100644 --- a/Code/Day 3_Multiple_Linear_Regression.ipynb +++ b/Code/Day 3_Multiple_Linear_Regression.ipynb @@ -23,7 +23,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 45, "metadata": {}, "outputs": [], "source": [ @@ -40,14 +40,14 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 57, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "[[165349.2 136897.8 471784.1 'New York']\n [162597.7 151377.59 443898.53 'California']\n [153441.51 101145.55 407934.54 'Florida']\n [144372.41 118671.85 383199.62 'New York']\n [142107.34 91391.77 366168.42 'Florida']\n [131876.9 99814.71 362861.36 'New York']\n [134615.46 147198.87 127716.82 'California']\n [130298.13 145530.06 323876.68 'Florida']\n [120542.52 148718.95 311613.29 'New York']\n [123334.88 108679.17 304981.62 'California']]\n[192261.83 191792.06 191050.39 182901.99 166187.94 156991.12 156122.51\n 155752.6 152211.77 149759.96 146121.95 144259.4 141585.52 134307.35\n 132602.65 129917.04 126992.93 125370.37 124266.9 122776.86 118474.03\n 111313.02 110352.25 108733.99 108552.04 107404.34 105733.54 105008.31\n 103282.38 101004.64 99937.59 97483.56 97427.84 96778.92 96712.8\n 96479.51 90708.19 89949.14 81229.06 81005.76 78239.91 77798.83\n 71498.49 69758.98 65200.33 64926.08 49490.75 42559.73 35673.41\n 14681.4 ]\n['New York' 'California' 'Florida' 'New York' 'Florida' 'New York'\n 'California' 'Florida' 'New York' 'California' 'Florida' 'California'\n 'Florida' 'California' 'Florida' 'New York' 'California' 'New York'\n 'Florida' 'New York' 'California' 'New York' 'Florida' 'Florida'\n 'New York' 'California' 'Florida' 'New York' 'Florida' 'New York'\n 'Florida' 'New York' 'California' 'Florida' 'California' 'New York'\n 'Florida' 'California' 'New York' 'California' 'California' 'Florida'\n 'California' 'New York' 'California' 'New York' 'Florida' 'California'\n 'New York' 'California']\n" + "X:\n[[165349.2 136897.8 471784.1 'New York']\n [162597.7 151377.59 443898.53 'California']\n [153441.51 101145.55 407934.54 'Florida']\n [144372.41 118671.85 383199.62 'New York']\n [142107.34 91391.77 366168.42 'Florida']\n [131876.9 99814.71 362861.36 'New York']\n [134615.46 147198.87 127716.82 'California']\n [130298.13 145530.06 323876.68 'Florida']\n [120542.52 148718.95 311613.29 'New York']\n [123334.88 108679.17 304981.62 'California']]\nY:\n[192261.83 191792.06 191050.39 182901.99 166187.94 156991.12 156122.51\n 155752.6 152211.77 149759.96 146121.95 144259.4 141585.52 134307.35\n 132602.65 129917.04 126992.93 125370.37 124266.9 122776.86 118474.03\n 111313.02 110352.25 108733.99 108552.04 107404.34 105733.54 105008.31\n 103282.38 101004.64 99937.59 97483.56 97427.84 96778.92 96712.8\n 96479.51 90708.19 89949.14 81229.06 81005.76 78239.91 77798.83\n 71498.49 69758.98 65200.33 64926.08 49490.75 42559.73 35673.41\n 14681.4 ]\n" ] }, { @@ -64,22 +64,42 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
R&D SpendAdministrationMarketing SpendStateProfit
0165349.20136897.80471784.10New York192261.83
1162597.70151377.59443898.53California191792.06
2153441.51101145.55407934.54Florida191050.39
3144372.41118671.85383199.62New York182901.99
4142107.3491391.77366168.42Florida166187.94
\n
" }, "metadata": {}, - "execution_count": 33 + "execution_count": 57 } ], "source": [ "dataset = pd.read_csv('../datasets/50_Startups.csv')\n", "X = dataset.iloc[ : , :-1].values\n", "Y = dataset.iloc[ : , 4 ].values\n", - "Z = dataset.iloc[ : , 3 ].values\n", + "Z = dataset.iloc[ : , 0 ].values\n", "print(\"X:\")\n", "print(X[:10])\n", - "print(Y)\n", "print(\"Y:\")\n", - "print(Z)\n", + "print(Y)\n", "dataset.head(5)" ] }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[[165349.2 136897.8 471784.1 'New York']\n [162597.7 151377.59 443898.53 'California']\n [153441.51 101145.55 407934.54 'Florida']\n [144372.41 118671.85 383199.62 'New York']\n [142107.34 91391.77 366168.42 'Florida']\n [131876.9 99814.71 362861.36 'New York']\n [134615.46 147198.87 127716.82 'California']\n [130298.13 145530.06 323876.68 'Florida']\n [120542.52 148718.95 311613.29 'New York']\n [123334.88 108679.17 304981.62 'California']\n [101913.08 110594.11 229160.95 'Florida']\n [100671.96 91790.61 249744.55 'California']\n [93863.75 127320.38 249839.44 'Florida']\n [91992.39 135495.07 252664.93 'California']\n [119943.24 156547.42 256512.92 'Florida']\n [114523.61 122616.84 261776.23 'New York']\n [78013.11 121597.55 264346.06 'California']\n [94657.16 145077.58 282574.31 'New York']\n [91749.16 114175.79 294919.57 'Florida']\n [86419.7 153514.11 224494.78489361703 'New York']\n [76253.86 113867.3 298664.47 'California']\n [78389.47 153773.43 299737.29 'New York']\n [73994.56 122782.75 303319.26 'Florida']\n [67532.53 105751.03 304768.73 'Florida']\n [77044.01 99281.34 140574.81 'New York']\n [64664.71 139553.16 137962.62 'California']\n [75328.87 144135.98 134050.07 'Florida']\n [72107.6 127864.55 353183.81 'New York']\n [66051.52 182645.56 118148.2 'Florida']\n [65605.48 153032.06 107138.38 'New York']\n [61994.48 115641.28 91131.24 'Florida']\n [61136.38 152701.92 88218.23 'New York']\n [63408.86 129219.61 46085.25 'California']\n [55493.95 103057.49 214634.81 'Florida']\n [46426.07 157693.92 210797.67 'California']\n [46014.02 85047.44 205517.64 'New York']\n [28663.76 127056.21 201126.82 'Florida']\n [44069.95 51283.14 197029.42 'California']\n [20229.59 65947.93 185265.1 'New York']\n [38558.51 82982.09 174999.3 'California']\n [28754.33 118546.05 172795.67 'California']\n [27892.92 84710.77 164470.71 'Florida']\n [23640.93 96189.63 148001.11 'California']\n [15505.73 127382.3 35534.17 'New York']\n [22177.74 154806.14 28334.72 'California']\n [1000.23 124153.04 1903.93 'New York']\n [1315.46 115816.21 297114.46 'Florida']\n [76793.34958333334 135426.92 224494.78489361703 'California']\n [542.05 51743.15 224494.78489361703 'New York']\n [76793.34958333334 116983.8 45173.06 'California']]\n" + ] + } + ], + "source": [ + "from sklearn.impute import SimpleImputer\n", + "imputer = SimpleImputer(missing_values=0.0, strategy=\"mean\")\n", + "imputer = imputer.fit(X[ : , 0:3])\n", + "X[ : , 0:3] = imputer.transform(X[ : , 0:3])\n", + "print(X)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -89,14 +109,14 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 60, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "[[165349.2 136897.8 471784.1 'New York']\n [162597.7 151377.59 443898.53 'California']\n [153441.51 101145.55 407934.54 'Florida']\n [144372.41 118671.85 383199.62 'New York']\n [142107.34 91391.77 366168.42 'Florida']\n [131876.9 99814.71 362861.36 'New York']\n [134615.46 147198.87 127716.82 'California']\n [130298.13 145530.06 323876.68 'Florida']\n [120542.52 148718.95 311613.29 'New York']\n [123334.88 108679.17 304981.62 'California']]\nlabelencoder:\n[[165349.2 136897.8 471784.1 2]\n [162597.7 151377.59 443898.53 0]\n [153441.51 101145.55 407934.54 1]\n [144372.41 118671.85 383199.62 2]\n [142107.34 91391.77 366168.42 1]\n [131876.9 99814.71 362861.36 2]\n [134615.46 147198.87 127716.82 0]\n [130298.13 145530.06 323876.68 1]\n [120542.52 148718.95 311613.29 2]\n [123334.88 108679.17 304981.62 0]]\nonehot:\n[[0.0 0.0 1.0 165349.2 136897.8 471784.1]\n [1.0 0.0 0.0 162597.7 151377.59 443898.53]\n [0.0 1.0 0.0 153441.51 101145.55 407934.54]\n [0.0 0.0 1.0 144372.41 118671.85 383199.62]\n [0.0 1.0 0.0 142107.34 91391.77 366168.42]\n [0.0 0.0 1.0 131876.9 99814.71 362861.36]\n [1.0 0.0 0.0 134615.46 147198.87 127716.82]\n [0.0 1.0 0.0 130298.13 145530.06 323876.68]\n [0.0 0.0 1.0 120542.52 148718.95 311613.29]\n [1.0 0.0 0.0 123334.88 108679.17 304981.62]]\n" + "original:\n[[165349.2 136897.8 471784.1 'New York']\n [162597.7 151377.59 443898.53 'California']\n [153441.51 101145.55 407934.54 'Florida']\n [144372.41 118671.85 383199.62 'New York']\n [142107.34 91391.77 366168.42 'Florida']\n [131876.9 99814.71 362861.36 'New York']\n [134615.46 147198.87 127716.82 'California']\n [130298.13 145530.06 323876.68 'Florida']\n [120542.52 148718.95 311613.29 'New York']\n [123334.88 108679.17 304981.62 'California']]\nlabelencoder:\n[[165349.2 136897.8 471784.1 2]\n [162597.7 151377.59 443898.53 0]\n [153441.51 101145.55 407934.54 1]\n [144372.41 118671.85 383199.62 2]\n [142107.34 91391.77 366168.42 1]\n [131876.9 99814.71 362861.36 2]\n [134615.46 147198.87 127716.82 0]\n [130298.13 145530.06 323876.68 1]\n [120542.52 148718.95 311613.29 2]\n [123334.88 108679.17 304981.62 0]]\nonehot:\n[[0.0 0.0 1.0 165349.2 136897.8 471784.1]\n [1.0 0.0 0.0 162597.7 151377.59 443898.53]\n [0.0 1.0 0.0 153441.51 101145.55 407934.54]\n [0.0 0.0 1.0 144372.41 118671.85 383199.62]\n [0.0 1.0 0.0 142107.34 91391.77 366168.42]\n [0.0 0.0 1.0 131876.9 99814.71 362861.36]\n [1.0 0.0 0.0 134615.46 147198.87 127716.82]\n [0.0 1.0 0.0 130298.13 145530.06 323876.68]\n [0.0 0.0 1.0 120542.52 148718.95 311613.29]\n [1.0 0.0 0.0 123334.88 108679.17 304981.62]]\n" ] } ], @@ -104,13 +124,14 @@ "from sklearn.preprocessing import LabelEncoder, OneHotEncoder\n", "from sklearn.compose import ColumnTransformer \n", "labelencoder = LabelEncoder()\n", + "print(\"original:\")\n", "print(X[:10])\n", "#print(X[: , 3])\n", "X[: , 3] = labelencoder.fit_transform(X[ : , 3])\n", "#print(X[: , 3])\n", "print(\"labelencoder:\")\n", "print(X[:10])\n", - "ct = ColumnTransformer([(\"\", OneHotEncoder(), [3])], remainder = 'passthrough')\n", + "ct = ColumnTransformer([( \"encoder\", OneHotEncoder(), [3])], remainder = 'passthrough')\n", "X = ct.fit_transform(X)\n", "#onehotencoder = OneHotEncoder(categorical_features = [3])\n", "#X = onehotencoder.fit_transform(X).toarray()\n", @@ -135,7 +156,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 61, "metadata": {}, "outputs": [], "source": [ @@ -144,19 +165,20 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 62, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "[[0.0 1.0 165349.2 136897.8 471784.1]\n [0.0 0.0 162597.7 151377.59 443898.53]\n [1.0 0.0 153441.51 101145.55 407934.54]\n [0.0 1.0 144372.41 118671.85 383199.62]\n [1.0 0.0 142107.34 91391.77 366168.42]\n [0.0 1.0 131876.9 99814.71 362861.36]\n [0.0 0.0 134615.46 147198.87 127716.82]\n [1.0 0.0 130298.13 145530.06 323876.68]\n [0.0 1.0 120542.52 148718.95 311613.29]\n [0.0 0.0 123334.88 108679.17 304981.62]\n [1.0 0.0 101913.08 110594.11 229160.95]\n [0.0 0.0 100671.96 91790.61 249744.55]\n [1.0 0.0 93863.75 127320.38 249839.44]\n [0.0 0.0 91992.39 135495.07 252664.93]\n [1.0 0.0 119943.24 156547.42 256512.92]\n [0.0 1.0 114523.61 122616.84 261776.23]\n [0.0 0.0 78013.11 121597.55 264346.06]\n [0.0 1.0 94657.16 145077.58 282574.31]\n [1.0 0.0 91749.16 114175.79 294919.57]\n [0.0 1.0 86419.7 153514.11 0.0]\n [0.0 0.0 76253.86 113867.3 298664.47]\n [0.0 1.0 78389.47 153773.43 299737.29]\n [1.0 0.0 73994.56 122782.75 303319.26]\n [1.0 0.0 67532.53 105751.03 304768.73]\n [0.0 1.0 77044.01 99281.34 140574.81]\n [0.0 0.0 64664.71 139553.16 137962.62]\n [1.0 0.0 75328.87 144135.98 134050.07]\n [0.0 1.0 72107.6 127864.55 353183.81]\n [1.0 0.0 66051.52 182645.56 118148.2]\n [0.0 1.0 65605.48 153032.06 107138.38]\n [1.0 0.0 61994.48 115641.28 91131.24]\n [0.0 1.0 61136.38 152701.92 88218.23]\n [0.0 0.0 63408.86 129219.61 46085.25]\n [1.0 0.0 55493.95 103057.49 214634.81]\n [0.0 0.0 46426.07 157693.92 210797.67]\n [0.0 1.0 46014.02 85047.44 205517.64]\n [1.0 0.0 28663.76 127056.21 201126.82]\n [0.0 0.0 44069.95 51283.14 197029.42]\n [0.0 1.0 20229.59 65947.93 185265.1]\n [0.0 0.0 38558.51 82982.09 174999.3]\n [0.0 0.0 28754.33 118546.05 172795.67]\n [1.0 0.0 27892.92 84710.77 164470.71]\n [0.0 0.0 23640.93 96189.63 148001.11]\n [0.0 1.0 15505.73 127382.3 35534.17]\n [0.0 0.0 22177.74 154806.14 28334.72]\n [0.0 1.0 1000.23 124153.04 1903.93]\n [1.0 0.0 1315.46 115816.21 297114.46]\n [0.0 0.0 0.0 135426.92 0.0]\n [0.0 1.0 542.05 51743.15 0.0]\n [0.0 0.0 0.0 116983.8 45173.06]]\n" + "[[0.0 1.0 165349.2 136897.8 471784.1]\n [0.0 0.0 162597.7 151377.59 443898.53]\n [1.0 0.0 153441.51 101145.55 407934.54]\n [0.0 1.0 144372.41 118671.85 383199.62]\n [1.0 0.0 142107.34 91391.77 366168.42]\n [0.0 1.0 131876.9 99814.71 362861.36]\n [0.0 0.0 134615.46 147198.87 127716.82]\n [1.0 0.0 130298.13 145530.06 323876.68]\n [0.0 1.0 120542.52 148718.95 311613.29]\n [0.0 0.0 123334.88 108679.17 304981.62]\n [1.0 0.0 101913.08 110594.11 229160.95]\n [0.0 0.0 100671.96 91790.61 249744.55]\n [1.0 0.0 93863.75 127320.38 249839.44]\n [0.0 0.0 91992.39 135495.07 252664.93]\n [1.0 0.0 119943.24 156547.42 256512.92]\n [0.0 1.0 114523.61 122616.84 261776.23]\n [0.0 0.0 78013.11 121597.55 264346.06]\n [0.0 1.0 94657.16 145077.58 282574.31]\n [1.0 0.0 91749.16 114175.79 294919.57]\n [0.0 1.0 86419.7 153514.11 224494.78489361703]\n [0.0 0.0 76253.86 113867.3 298664.47]\n [0.0 1.0 78389.47 153773.43 299737.29]\n [1.0 0.0 73994.56 122782.75 303319.26]\n [1.0 0.0 67532.53 105751.03 304768.73]\n [0.0 1.0 77044.01 99281.34 140574.81]\n [0.0 0.0 64664.71 139553.16 137962.62]\n [1.0 0.0 75328.87 144135.98 134050.07]\n [0.0 1.0 72107.6 127864.55 353183.81]\n [1.0 0.0 66051.52 182645.56 118148.2]\n [0.0 1.0 65605.48 153032.06 107138.38]\n [1.0 0.0 61994.48 115641.28 91131.24]\n [0.0 1.0 61136.38 152701.92 88218.23]\n [0.0 0.0 63408.86 129219.61 46085.25]\n [1.0 0.0 55493.95 103057.49 214634.81]\n [0.0 0.0 46426.07 157693.92 210797.67]\n [0.0 1.0 46014.02 85047.44 205517.64]\n [1.0 0.0 28663.76 127056.21 201126.82]\n [0.0 0.0 44069.95 51283.14 197029.42]\n [0.0 1.0 20229.59 65947.93 185265.1]\n [0.0 0.0 38558.51 82982.09 174999.3]\n [0.0 0.0 28754.33 118546.05 172795.67]\n [1.0 0.0 27892.92 84710.77 164470.71]\n [0.0 0.0 23640.93 96189.63 148001.11]\n [0.0 1.0 15505.73 127382.3 35534.17]\n [0.0 0.0 22177.74 154806.14 28334.72]\n [0.0 1.0 1000.23 124153.04 1903.93]\n [1.0 0.0 1315.46 115816.21 297114.46]\n [0.0 0.0 76793.34958333334 135426.92 224494.78489361703]\n [0.0 1.0 542.05 51743.15 224494.78489361703]\n [0.0 0.0 76793.34958333334 116983.8 45173.06]]\n[[0.0 0.0 1.0 165349.2 136897.8 471784.1]\n [1.0 0.0 0.0 162597.7 151377.59 443898.53]\n [0.0 1.0 0.0 153441.51 101145.55 407934.54]\n [0.0 0.0 1.0 144372.41 118671.85 383199.62]\n [0.0 1.0 0.0 142107.34 91391.77 366168.42]\n [0.0 0.0 1.0 131876.9 99814.71 362861.36]\n [1.0 0.0 0.0 134615.46 147198.87 127716.82]\n [0.0 1.0 0.0 130298.13 145530.06 323876.68]\n [0.0 0.0 1.0 120542.52 148718.95 311613.29]\n [1.0 0.0 0.0 123334.88 108679.17 304981.62]\n [0.0 1.0 0.0 101913.08 110594.11 229160.95]\n [1.0 0.0 0.0 100671.96 91790.61 249744.55]\n [0.0 1.0 0.0 93863.75 127320.38 249839.44]\n [1.0 0.0 0.0 91992.39 135495.07 252664.93]\n [0.0 1.0 0.0 119943.24 156547.42 256512.92]\n [0.0 0.0 1.0 114523.61 122616.84 261776.23]\n [1.0 0.0 0.0 78013.11 121597.55 264346.06]\n [0.0 0.0 1.0 94657.16 145077.58 282574.31]\n [0.0 1.0 0.0 91749.16 114175.79 294919.57]\n [0.0 0.0 1.0 86419.7 153514.11 224494.78489361703]\n [1.0 0.0 0.0 76253.86 113867.3 298664.47]\n [0.0 0.0 1.0 78389.47 153773.43 299737.29]\n [0.0 1.0 0.0 73994.56 122782.75 303319.26]\n [0.0 1.0 0.0 67532.53 105751.03 304768.73]\n [0.0 0.0 1.0 77044.01 99281.34 140574.81]\n [1.0 0.0 0.0 64664.71 139553.16 137962.62]\n [0.0 1.0 0.0 75328.87 144135.98 134050.07]\n [0.0 0.0 1.0 72107.6 127864.55 353183.81]\n [0.0 1.0 0.0 66051.52 182645.56 118148.2]\n [0.0 0.0 1.0 65605.48 153032.06 107138.38]\n [0.0 1.0 0.0 61994.48 115641.28 91131.24]\n [0.0 0.0 1.0 61136.38 152701.92 88218.23]\n [1.0 0.0 0.0 63408.86 129219.61 46085.25]\n [0.0 1.0 0.0 55493.95 103057.49 214634.81]\n [1.0 0.0 0.0 46426.07 157693.92 210797.67]\n [0.0 0.0 1.0 46014.02 85047.44 205517.64]\n [0.0 1.0 0.0 28663.76 127056.21 201126.82]\n [1.0 0.0 0.0 44069.95 51283.14 197029.42]\n [0.0 0.0 1.0 20229.59 65947.93 185265.1]\n [1.0 0.0 0.0 38558.51 82982.09 174999.3]\n [1.0 0.0 0.0 28754.33 118546.05 172795.67]\n [0.0 1.0 0.0 27892.92 84710.77 164470.71]\n [1.0 0.0 0.0 23640.93 96189.63 148001.11]\n [0.0 0.0 1.0 15505.73 127382.3 35534.17]\n [1.0 0.0 0.0 22177.74 154806.14 28334.72]\n [0.0 0.0 1.0 1000.23 124153.04 1903.93]\n [0.0 1.0 0.0 1315.46 115816.21 297114.46]\n [1.0 0.0 0.0 76793.34958333334 135426.92 224494.78489361703]\n [0.0 0.0 1.0 542.05 51743.15 224494.78489361703]\n [1.0 0.0 0.0 76793.34958333334 116983.8 45173.06]]\n" ] } ], "source": [ - "print(X1)" + "print(X1)\n", + "print(X)" ] }, { @@ -168,7 +190,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 63, "metadata": {}, "outputs": [ { @@ -198,7 +220,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 64, "metadata": {}, "outputs": [ { @@ -209,7 +231,7 @@ ] }, "metadata": {}, - "execution_count": 30 + "execution_count": 64 } ], "source": [ @@ -229,7 +251,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 65, "metadata": {}, "outputs": [], "source": [ @@ -239,14 +261,14 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 66, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "[103015.20159796 132582.27760816 132447.73845174 71976.09851258\n 178537.48221055 116161.24230166 67851.69209676 98791.73374686\n 113969.43533013 167921.06569551]\n[103015.20159796 132582.27760815 132447.73845175 71976.09851258\n 178537.48221056 116161.24230166 67851.69209676 98791.73374687\n 113969.43533013 167921.06569551]\n" + "[102388.94113041 121465.72713517 127340.57708619 71709.47538912\n 174211.0848 121771.65061494 68393.54360668 95588.5313349\n 116596.3467699 162514.07218551]\n[102388.94113046 121465.72713518 127340.57708619 71709.47538916\n 174211.08479987 121771.65061482 68393.5436067 95588.53133498\n 116596.34676982 162514.07218541]\n" ] } ],