fix transform issue
1. change fit_transform to transform for test data, it will increase F1 score 2. Add output for confusion_matrix and classification_report to understand the classification result
This commit is contained in:
@ -18,7 +18,7 @@ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, rand
|
|||||||
from sklearn.preprocessing import StandardScaler
|
from sklearn.preprocessing import StandardScaler
|
||||||
sc = StandardScaler()
|
sc = StandardScaler()
|
||||||
X_train = sc.fit_transform(X_train)
|
X_train = sc.fit_transform(X_train)
|
||||||
X_test = sc.fit_transform(X_test)
|
X_test = sc.transform(X_test)
|
||||||
|
|
||||||
#Fitting SVM to the Training set
|
#Fitting SVM to the Training set
|
||||||
from sklearn.svm import SVC
|
from sklearn.svm import SVC
|
||||||
@ -30,7 +30,10 @@ y_pred = classifier.predict(X_test)
|
|||||||
|
|
||||||
#Making the Confusion Matrix
|
#Making the Confusion Matrix
|
||||||
from sklearn.metrics import confusion_matrix
|
from sklearn.metrics import confusion_matrix
|
||||||
|
from sklearn.metrics import classification_report
|
||||||
cm = confusion_matrix(y_test, y_pred)
|
cm = confusion_matrix(y_test, y_pred)
|
||||||
|
print(cm)
|
||||||
|
print(classification_report(y_test, y_pred))
|
||||||
|
|
||||||
#Visualising the Training set results
|
#Visualising the Training set results
|
||||||
from matplotlib.colors import ListedColormap
|
from matplotlib.colors import ListedColormap
|
||||||
|
|||||||
Reference in New Issue
Block a user