fix transform issue
1. change fit_transform to transform for test data, it will increase F1 score 2. Add output for confusion_matrix and classification_report to understand the classification result
This commit is contained in:
@ -18,7 +18,7 @@ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, rand
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
sc = StandardScaler()
|
||||
X_train = sc.fit_transform(X_train)
|
||||
X_test = sc.fit_transform(X_test)
|
||||
X_test = sc.transform(X_test)
|
||||
|
||||
#Fitting SVM to the Training set
|
||||
from sklearn.svm import SVC
|
||||
@ -30,7 +30,10 @@ y_pred = classifier.predict(X_test)
|
||||
|
||||
#Making the Confusion Matrix
|
||||
from sklearn.metrics import confusion_matrix
|
||||
from sklearn.metrics import classification_report
|
||||
cm = confusion_matrix(y_test, y_pred)
|
||||
print(cm)
|
||||
print(classification_report(y_test, y_pred))
|
||||
|
||||
#Visualising the Training set results
|
||||
from matplotlib.colors import ListedColormap
|
||||
|
||||
Reference in New Issue
Block a user