From 20bb175b9c3140928c537058e2b573b0e4bdeefb Mon Sep 17 00:00:00 2001
From: AnnaGe <40264376+AnnaXJGe@users.noreply.github.com>
Date: Sat, 11 Aug 2018 12:08:19 +0800
Subject: [PATCH] Add files via upload
---
Code/Day 33.Random Forests.md | 161 ++++++++++++++++++++++++++++++++++
1 file changed, 161 insertions(+)
create mode 100644 Code/Day 33.Random Forests.md
diff --git a/Code/Day 33.Random Forests.md b/Code/Day 33.Random Forests.md
new file mode 100644
index 0000000..baabf7a
--- /dev/null
+++ b/Code/Day 33.Random Forests.md
@@ -0,0 +1,161 @@
+
+
+```python
+# 随机森林Random Forests
+```
+
+
+```python
+
+
+
+```
+
+
+```python
+### 导入库
+```
+
+
+```python
+```python
+import numpy as np
+import matplotlib.pyplot as plt
+import pandas as pd
+```
+```
+
+
+```python
+### 导入数据集
+```
+
+
+```python
+```python
+dataset = pd.read_csv('Social_Network_Ads.csv')
+X = dataset.iloc[:, [2, 3]].values
+y = dataset.iloc[:, 4].values
+```
+```
+
+
+```python
+### 将数据集拆分成训练集和测试集
+```
+
+
+```python
+```python
+from sklearn.cross_validation import train_test_split
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
+```
+```
+
+
+```python
+### 特征缩放
+```
+
+
+```python
+```python
+from sklearn.preprocessing import StandardScaler
+sc = StandardScaler()
+X_train = sc.fit_transform(X_train)
+X_test = sc.transform(X_test)
+```
+```
+
+
+```python
+### 调试训练集的随机森林
+```
+
+
+```python
+```python
+from sklearn.ensemble import RandomForestClassifier
+classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0)
+classifier.fit(X_train, y_train)
+```
+```
+
+
+```python
+### 预测测试集结果
+```
+
+
+```python
+```python
+y_pred = classifier.predict(X_test)
+```
+```
+
+
+```python
+### 生成混淆矩阵,也称作误差矩阵
+```
+
+
+```python
+```python
+from sklearn.metrics import confusion_matrix
+cm = confusion_matrix(y_test, y_pred)
+```
+```
+
+
+```python
+### 将训练集结果可视化
+```
+
+
+```python
+```python
+from matplotlib.colors import ListedColormap
+X_set, y_set = X_train, y_train
+X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
+ np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
+plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
+ alpha = 0.75, cmap = ListedColormap(('red', 'green')))
+plt.xlim(X1.min(), X1.max())
+plt.ylim(X2.min(), X2.max())
+for i, j in enumerate(np.unique(y_set)):
+ plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
+ c = ListedColormap(('red', 'green'))(i), label = j)
+plt.title('Random Forest Classification (Training set)')
+plt.xlabel('Age')
+plt.ylabel('Estimated Salary')
+plt.legend()
+plt.show()
+```
+```
+
+
+```python
+### 将数据集结果可视化
+```
+
+
+```python
+```python
+from matplotlib.colors import ListedColormap
+X_set, y_set = X_test, y_test
+X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
+ np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
+plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
+ alpha = 0.75, cmap = ListedColormap(('red', 'green')))
+plt.xlim(X1.min(), X1.max())
+plt.ylim(X2.min(), X2.max())
+for i, j in enumerate(np.unique(y_set)):
+ plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
+ c = ListedColormap(('red', 'green'))(i), label = j)
+plt.title('Random Forest Classification (Test set)')
+plt.xlabel('Age')
+plt.ylabel('Estimated Salary')
+plt.legend()
+plt.show()
+```
+```