From 4a80eee31c04381aeb8fa6f363272ef03a55068a Mon Sep 17 00:00:00 2001
From: AnnaGe <40264376+AnnaXJGe@users.noreply.github.com>
Date: Sat, 11 Aug 2018 12:20:16 +0800
Subject: [PATCH] Update Day 33 Random Forests
---
Code/Day 33 Random Forests | 10 ++++++++++
1 file changed, 10 insertions(+)
diff --git a/Code/Day 33 Random Forests b/Code/Day 33 Random Forests
index 1daa6db..190828b 100644
--- a/Code/Day 33 Random Forests
+++ b/Code/Day 33 Random Forests
@@ -2,23 +2,27 @@
+
### 导入库
```python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```
+
### 导入数据集
```python
dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values
```
+
### 将数据集拆分成训练集和测试集
```python
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
```
+
### 特征缩放
```python
from sklearn.preprocessing import StandardScaler
@@ -26,21 +30,25 @@ sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```
+
### 调试训练集的随机森林
```python
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0)
classifier.fit(X_train, y_train)
```
+
### 预测测试集结果
```python
y_pred = classifier.predict(X_test)
```
+
### 生成混淆矩阵,也称作误差矩阵
```python
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
```
+
### 将训练集结果可视化
```python
from matplotlib.colors import ListedColormap
@@ -60,6 +68,7 @@ plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
```
+
### 将数据集结果可视化
```python
from matplotlib.colors import ListedColormap
@@ -78,3 +87,4 @@ plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
+```