From 4bc12168205764ce837bcdd52b7f8d90d3222ac9 Mon Sep 17 00:00:00 2001 From: zhang yongquan Date: Tue, 7 Aug 2018 09:50:43 +0800 Subject: [PATCH] Add files via upload --- Code/Day 13_SVM.py | 69 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 69 insertions(+) create mode 100644 Code/Day 13_SVM.py diff --git a/Code/Day 13_SVM.py b/Code/Day 13_SVM.py new file mode 100644 index 0000000..7078ecf --- /dev/null +++ b/Code/Day 13_SVM.py @@ -0,0 +1,69 @@ +#Day13: Support Vector Machine (SVM) + +#Importing the libraries +import numpy as np +import matplotlib.pyplot as plt +import pandas as pd + +#Importing the dataset +dataset = pd.read_csv('Social_Network_Ads.csv') +X = dataset.iloc[:, [2, 3]].values +y = dataset.iloc[:, 4].values + +#Splitting the dataset into the Training set and Test set +from sklearn.cross_validation import train_test_split +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) + +#Feature Scaling +from sklearn.preprocessing import StandardScaler +sc = StandardScaler() +X_train = sc.fit_transform(X_train) +X_test = sc.transform(X_test) + +#Fitting SVM to the Training set +from sklearn.svm import SVC +classifier = SVC(kernel = 'linear', random_state = 0) +classifier.fit(X_train, y_train) + +#Predicting the Test set results +y_pred = classifier.predict(X_test) + +#Making the Confusion Matrix +from sklearn.metrics import confusion_matrix +cm = confusion_matrix(y_test, y_pred) + +#Visualising the Training set results +from matplotlib.colors import ListedColormap +X_set, y_set = X_train, y_train +X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), + np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) +plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), + alpha = 0.75, cmap = ListedColormap(('red', 'green'))) +plt.xlim(X1.min(), X1.max()) +plt.ylim(X2.min(), X2.max()) +for i, j in enumerate(np.unique(y_set)): + plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], + c = ListedColormap(('red', 'green'))(i), label = j) +plt.title('SVM (Training set)') +plt.xlabel('Age') +plt.ylabel('Estimated Salary') +plt.legend() +plt.show() + +#Visualising the Test set results +from matplotlib.colors import ListedColormap +X_set, y_set = X_test, y_test +X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), + np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) +plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), + alpha = 0.75, cmap = ListedColormap(('red', 'green'))) +plt.xlim(X1.min(), X1.max()) +plt.ylim(X2.min(), X2.max()) +for i, j in enumerate(np.unique(y_set)): + plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], + c = ListedColormap(('red', 'green'))(i), label = j) +plt.title('SVM (Test set)') +plt.xlabel('Age') +plt.ylabel('Estimated Salary') +plt.legend() +plt.show() \ No newline at end of file