diff --git a/README.md b/README.md
index 44a0013..1788a62 100644
--- a/README.md
+++ b/README.md
@@ -205,25 +205,39 @@ B站视频在[这里](https://space.bilibili.com/88461692/#/channel/detail?cid=2
得到JK VanderPlas写的书《Python数据科学手册(Python Data Science HandBook)》,Jupyter notebooks在[这里](https://github.com/jakevdp/PythonDataScienceHandbook)。
**[高清中文版pdf](https://github.com/MachineLearning100/100-Days-Of-ML-Code/blob/master/Other%20Docs/Python%E6%95%B0%E6%8D%AE%E7%A7%91%E5%AD%A6%E6%89%8B%E5%86%8C.zip)**
第2章:NumPy介绍,包括数据类型、数组和数组计算。
-br>代码如下:
-
[NumPy介绍](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.00-Introduction-to-NumPy.ipynb)
-
[理解Python中的数据类型](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.01-Understanding-Data-Types.ipynb)
-
[NumPy数组基础](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.02-The-Basics-Of-NumPy-Arrays.ipynb)
-
[NumPy数组的计算:通用函数](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.03-Computation-on-arrays-ufuncs.ipynb)
+
代码如下:
+
[2. NumPy入门](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.00-Introduction-to-NumPy.ipynb)
+
[2.1 理解Python中的数据类型](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.01-Understanding-Data-Types.ipynb)
+
[2.2 NumPy数组基础](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.02-The-Basics-Of-NumPy-Arrays.ipynb)
+
[2.3 NumPy数组的计算:通用函数](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.03-Computation-on-arrays-ufuncs.ipynb)
## 深入研究 | NUMPY | 第46天
第2章: 聚合, 比较运算符和广播。
代码如下:
-
[聚合:最小值、最大值和其他值](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.04-Computation-on-arrays-aggregates.ipynb)
-
[数组的计算:广播](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.05-Computation-on-arrays-broadcasting.ipynb)
-
[比较、掩码和布尔运算](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.06-Boolean-Arrays-and-Masks.ipynb)
+
[2.4 聚合:最小值、最大值和其他值](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.04-Computation-on-arrays-aggregates.ipynb)
+
[2.5 数组的计算:广播](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.05-Computation-on-arrays-broadcasting.ipynb)
+
[2.6 比较、掩码和布尔运算](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.06-Boolean-Arrays-and-Masks.ipynb)
## 深入研究 | NUMPY | 第47天
第2章: 花哨的索引,数组排序,结构化数据。
代码如下:
-
[花哨的索引](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.07-Fancy-Indexing.ipynb)
-
[数组的排序](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.08-Sorting.ipynb)
-
[结构化数据:NumPy的结构化数组](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.09-
Structured-Data-NumPy.ipynb)
+
[2.7 花哨的索引](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.07-Fancy-Indexing.ipynb)
+
[2.8 数组的排序](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.08-Sorting.ipynb)
+
[2.9 结构化数据:NumPy的结构化数组](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/02.09-
Structured-Data-NumPy.ipynb)
+
+## 深入研究 | PANDAS | 第48天
+第3章:Pandas数据处理
+
包含Pandas对象,数据取值与选择,数值运算方法,处理缺失值,层级索引,合并数据集。
+
代码如下:
+
[3 Pandas数据处理](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/03.00-Introduction-to-Pandas.ipynb)
+
[3.1 Pandas对象简介](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/03.01-Introducing-Pandas-Objects.ipynb)
+
[3.2 数据取值与选择](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/03.02-Data-Indexing-and-Selection.ipynb)
+
[3.3 Pandas数值运算方法](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/03.03-Operations-in-Pandas.ipynb)
+
[3.4 处理缺失值](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/03.04-Missing-Values.ipynb)
+
[3.5 层级索引](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/03.05-Hierarchical-Indexing.ipynb)
+
[3.6 合并数据集:ConCat和Append方法](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/03.06-Concat-And-Append.ipynb)
+
+
## 层次聚类 | 第54天
[动画演示](https://github.com/MachineLearning100/100-Days-Of-ML-Code/blob/master/Other%20Docs/%E5%B1%82%E6%AC%A1%E8%81%9A%E7%B1%BB.gif)