diff --git a/Code/Day 33 Random Forests b/Code/Day 33 Random Forests deleted file mode 100644 index 190828b..0000000 --- a/Code/Day 33 Random Forests +++ /dev/null @@ -1,90 +0,0 @@ -# 随机森林Random Forests -

- -

- -### 导入库 -```python -import numpy as np -import matplotlib.pyplot as plt -import pandas as pd -``` - -### 导入数据集 -```python -dataset = pd.read_csv('Social_Network_Ads.csv') -X = dataset.iloc[:, [2, 3]].values -y = dataset.iloc[:, 4].values -``` - -### 将数据集拆分成训练集和测试集 -```python -from sklearn.cross_validation import train_test_split -X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) -``` - -### 特征缩放 -```python -from sklearn.preprocessing import StandardScaler -sc = StandardScaler() -X_train = sc.fit_transform(X_train) -X_test = sc.transform(X_test) -``` - -### 调试训练集的随机森林 -```python -from sklearn.ensemble import RandomForestClassifier -classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0) -classifier.fit(X_train, y_train) -``` - -### 预测测试集结果 -```python -y_pred = classifier.predict(X_test) -``` - -### 生成混淆矩阵,也称作误差矩阵 -```python -from sklearn.metrics import confusion_matrix -cm = confusion_matrix(y_test, y_pred) -``` - -### 将训练集结果可视化 -```python -from matplotlib.colors import ListedColormap -X_set, y_set = X_train, y_train -X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), - np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) -plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), - alpha = 0.75, cmap = ListedColormap(('red', 'green'))) -plt.xlim(X1.min(), X1.max()) -plt.ylim(X2.min(), X2.max()) -for i, j in enumerate(np.unique(y_set)): - plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], - c = ListedColormap(('red', 'green'))(i), label = j) -plt.title('Random Forest Classification (Training set)') -plt.xlabel('Age') -plt.ylabel('Estimated Salary') -plt.legend() -plt.show() -``` - -### 将数据集结果可视化 -```python -from matplotlib.colors import ListedColormap -X_set, y_set = X_test, y_test -X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), - np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) -plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), - alpha = 0.75, cmap = ListedColormap(('red', 'green'))) -plt.xlim(X1.min(), X1.max()) -plt.ylim(X2.min(), X2.max()) -for i, j in enumerate(np.unique(y_set)): - plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], - c = ListedColormap(('red', 'green'))(i), label = j) -plt.title('Random Forest Classification (Test set)') -plt.xlabel('Age') -plt.ylabel('Estimated Salary') -plt.legend() -plt.show() -```