diff --git a/Code/Day2_Simple_Linear_Regression.md b/Code/Day2_Simple_Linear_Regression.md
index e420646..59365c1 100644
--- a/Code/Day2_Simple_Linear_Regression.md
+++ b/Code/Day2_Simple_Linear_Regression.md
@@ -2,11 +2,11 @@
-
+
-# Step 1: Data Preprocessing
+# 第一步:数据预处理
```python
import pandas as pd
import numpy as np
@@ -20,24 +20,24 @@ from sklearn.cross_validation import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0)
```
-# Step 2: Fitting Simple Linear Regression Model to the training set
+# 第二步:训练集使用简单线性模型来训练
```python
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor = regressor.fit(X_train, Y_train)
```
- # Step 3: Predecting the Result
+ # 第三步:预测结果
```python
Y_pred = regressor.predict(X_test)
```
- # Step 4: Visualization
- ## Visualising the Training results
+ # 第四步:可视化
+ ## 训练集结果可视化
```python
plt.scatter(X_train , Y_train, color = 'red')
plt.plot(X_train , regressor.predict(X_train), color ='blue')
```
- ## Visualizing the test results
+ ## 测试集结果可视化
```python
plt.scatter(X_test , Y_test, color = 'red')
plt.plot(X_test , regressor.predict(X_test), color ='blue')