From 6e2e608f4a7a2eab299716b718ed401d6666bfb7 Mon Sep 17 00:00:00 2001 From: wengJJ <31797645+wengJJ@users.noreply.github.com> Date: Mon, 6 Aug 2018 09:18:05 +0800 Subject: [PATCH] Update Day2_Simple_Linear_Regression.md --- Code/Day2_Simple_Linear_Regression.md | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/Code/Day2_Simple_Linear_Regression.md b/Code/Day2_Simple_Linear_Regression.md index e420646..59365c1 100644 --- a/Code/Day2_Simple_Linear_Regression.md +++ b/Code/Day2_Simple_Linear_Regression.md @@ -2,11 +2,11 @@

- +

-# Step 1: Data Preprocessing +# 第一步:数据预处理 ```python import pandas as pd import numpy as np @@ -20,24 +20,24 @@ from sklearn.cross_validation import train_test_split X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0) ``` -# Step 2: Fitting Simple Linear Regression Model to the training set +# 第二步:训练集使用简单线性模型来训练 ```python from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor = regressor.fit(X_train, Y_train) ``` - # Step 3: Predecting the Result + # 第三步:预测结果 ```python Y_pred = regressor.predict(X_test) ``` - # Step 4: Visualization - ## Visualising the Training results + # 第四步:可视化 + ## 训练集结果可视化 ```python plt.scatter(X_train , Y_train, color = 'red') plt.plot(X_train , regressor.predict(X_train), color ='blue') ``` - ## Visualizing the test results + ## 测试集结果可视化 ```python plt.scatter(X_test , Y_test, color = 'red') plt.plot(X_test , regressor.predict(X_test), color ='blue')