add Day 1.md

This commit is contained in:
张勇全
2018-08-05 22:58:46 +08:00
parent ee84c23d1c
commit 7a79ad8fd9
2 changed files with 53 additions and 1 deletions

View File

@ -0,0 +1,52 @@
# 数据预处理
<p align="center">
<img src="https://github.com/MachineLearning100/100-Days-Of-ML-Code/blob/master/Info-graphs/Day%201.jpg">
</p>
如图所示通过6步完成数据预处理。
此例用到的[数据](https://github.com/Avik-Jain/100-Days-Of-ML-Code/blob/master/datasets/Data.csv)。
## 第1步导入库
```Python
import numpy as np
import pandas as pd
```
## 第2步导入数据集
```python
dataset = pd.read_csv('Data.csv')
X = dataset.iloc[ : , :-1].values
Y = dataset.iloc[ : , 3].values
```
## 第3步处理丢失数据
```python
from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values = "NaN", strategy = "mean", axis = 0)
imputer = imputer.fit(X[ : , 1:3])
X[ : , 1:3] = imputer.transform(X[ : , 1:3])
```
## 第4步解析分类数据
```python
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[ : , 0] = labelencoder_X.fit_transform(X[ : , 0])
```
### 创建虚拟变量
```python
onehotencoder = OneHotEncoder(categorical_features = [0])
X = onehotencoder.fit_transform(X).toarray()
labelencoder_Y = LabelEncoder()
Y = labelencoder_Y.fit_transform(Y)
```
## 第5步拆分数据集为训练集合和测试集合
```python
from sklearn.cross_validation import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split( X , Y , test_size = 0.2, random_state = 0)
```
## 第6步特征量化
```python
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.fit_transform(X_test)
```

View File

@ -2,7 +2,7 @@
英文原版请移步[Avik-Jain](https://github.com/Avik-Jain/100-Days-Of-ML-Code)。
## 数据预处理 | 第1天
## 数据预处理 | [第1天]()
<p align="center">
<img src="https://github.com/MachineLearning100/100-Days-Of-ML-Code/blob/master/Info-graphs/Day%201.jpg">