diff --git a/Code/Day 2_Simple_Linear_Regression.ipynb b/Code/Day 2_Simple_Linear_Regression.ipynb
index fc8f5d9..375277c 100644
--- a/Code/Day 2_Simple_Linear_Regression.ipynb
+++ b/Code/Day 2_Simple_Linear_Regression.ipynb
@@ -19,7 +19,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 62,
"metadata": {},
"outputs": [],
"source": [
@@ -37,45 +37,62 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 90,
"metadata": {},
"outputs": [
{
- "name": "stdout",
"output_type": "stream",
+ "name": "stdout",
"text": [
- " Hours Scores\n",
- "0 2.5 21\n",
- "1 5.1 47\n",
- "2 3.2 27\n",
- "3 8.5 75\n",
- "4 3.5 30\n",
- "5 1.5 20\n",
- "6 9.2 88\n",
- "7 5.5 60\n",
- "8 8.3 81\n",
- "9 2.7 25\n",
- "10 7.7 85\n",
- "11 5.9 62\n",
- "12 4.5 41\n",
- "13 3.3 42\n",
- "14 1.1 17\n",
- "15 8.9 95\n",
- "16 2.5 30\n",
- "17 1.9 24\n",
- "18 6.1 67\n",
- "19 7.4 69\n",
- "20 2.7 30\n",
- "21 4.8 54\n",
- "22 3.8 35\n",
- "23 6.9 76\n",
- "24 7.8 86\n"
+ " Hours Scores\n0 2.5 21\n1 5.1 47\n2 3.2 27\n3 8.5 75\n4 3.5 30\n5 1.5 20\n6 9.2 88\n7 5.5 60\n8 8.3 81\n9 2.7 25\n10 7.7 85\n11 5.9 62\n12 4.5 41\n13 3.3 42\n14 1.1 17\n15 8.9 95\n16 2.5 30\n17 1.9 24\n18 6.1 67\n19 7.4 69\n20 2.7 30\n21 4.8 54\n22 3.8 35\n23 6.9 76\n24 7.8 86\n25 2.1 93\n26 2.2 93\n27 2.5 93\n Hours Scores\n15 8.9 95\n27 2.5 93\n26 2.2 93\n25 2.1 93\n6 9.2 88\n24 7.8 86\n10 7.7 85\n8 8.3 81\n23 6.9 76\n3 8.5 75\n19 7.4 69\n18 6.1 67\n11 5.9 62\n7 5.5 60\n21 4.8 54\n1 5.1 47\n13 3.3 42\n12 4.5 41\n22 3.8 35\n20 2.7 30\n4 3.5 30\n16 2.5 30\n2 3.2 27\n9 2.7 25\n17 1.9 24\n0 2.5 21\n5 1.5 20\n14 1.1 17\n"
]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Hours Scores\n",
+ "0 2.5 21\n",
+ "1 5.1 47\n",
+ "2 3.2 27\n",
+ "3 8.5 75\n",
+ "4 3.5 30\n",
+ "5 1.5 20\n",
+ "6 9.2 88\n",
+ "7 5.5 60\n",
+ "8 8.3 81\n",
+ "9 2.7 25\n",
+ "10 7.7 85\n",
+ "11 5.9 62\n",
+ "12 4.5 41\n",
+ "13 3.3 42\n",
+ "14 1.1 17\n",
+ "15 8.9 95\n",
+ "16 2.5 30\n",
+ "17 1.9 24\n",
+ "18 6.1 67\n",
+ "19 7.4 69\n",
+ "20 2.7 30\n",
+ "21 4.8 54\n",
+ "22 3.8 35\n",
+ "23 6.9 76\n",
+ "24 7.8 86\n",
+ "25 2.1 93\n",
+ "26 2.2 93\n",
+ "27 2.5 93"
+ ],
+ "text/html": "
\n\n
\n \n \n | \n Hours | \n Scores | \n
\n \n \n \n | 0 | \n 2.5 | \n 21 | \n
\n \n | 1 | \n 5.1 | \n 47 | \n
\n \n | 2 | \n 3.2 | \n 27 | \n
\n \n | 3 | \n 8.5 | \n 75 | \n
\n \n | 4 | \n 3.5 | \n 30 | \n
\n \n | 5 | \n 1.5 | \n 20 | \n
\n \n | 6 | \n 9.2 | \n 88 | \n
\n \n | 7 | \n 5.5 | \n 60 | \n
\n \n | 8 | \n 8.3 | \n 81 | \n
\n \n | 9 | \n 2.7 | \n 25 | \n
\n \n | 10 | \n 7.7 | \n 85 | \n
\n \n | 11 | \n 5.9 | \n 62 | \n
\n \n | 12 | \n 4.5 | \n 41 | \n
\n \n | 13 | \n 3.3 | \n 42 | \n
\n \n | 14 | \n 1.1 | \n 17 | \n
\n \n | 15 | \n 8.9 | \n 95 | \n
\n \n | 16 | \n 2.5 | \n 30 | \n
\n \n | 17 | \n 1.9 | \n 24 | \n
\n \n | 18 | \n 6.1 | \n 67 | \n
\n \n | 19 | \n 7.4 | \n 69 | \n
\n \n | 20 | \n 2.7 | \n 30 | \n
\n \n | 21 | \n 4.8 | \n 54 | \n
\n \n | 22 | \n 3.8 | \n 35 | \n
\n \n | 23 | \n 6.9 | \n 76 | \n
\n \n | 24 | \n 7.8 | \n 86 | \n
\n \n | 25 | \n 2.1 | \n 93 | \n
\n \n | 26 | \n 2.2 | \n 93 | \n
\n \n | 27 | \n 2.5 | \n 93 | \n
\n \n
\n
"
+ },
+ "metadata": {},
+ "execution_count": 90
}
],
"source": [
"dataset = pd.read_csv('../datasets/studentscores.csv')\n",
- "print(dataset)"
+ "print(dataset)\n",
+ "df = dataset.sort_values(\"Scores\",ascending=False)\n",
+ "print(df)\n",
+ "dataset.head(30)"
]
},
{
@@ -87,46 +104,20 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 73,
"metadata": {},
"outputs": [
{
- "name": "stdout",
"output_type": "stream",
+ "name": "stdout",
"text": [
- "X: [[2.5]\n",
- " [5.1]\n",
- " [3.2]\n",
- " [8.5]\n",
- " [3.5]\n",
- " [1.5]\n",
- " [9.2]\n",
- " [5.5]\n",
- " [8.3]\n",
- " [2.7]\n",
- " [7.7]\n",
- " [5.9]\n",
- " [4.5]\n",
- " [3.3]\n",
- " [1.1]\n",
- " [8.9]\n",
- " [2.5]\n",
- " [1.9]\n",
- " [6.1]\n",
- " [7.4]\n",
- " [2.7]\n",
- " [4.8]\n",
- " [3.8]\n",
- " [6.9]\n",
- " [7.8]]\n",
- "Y: [21 47 27 75 30 20 88 60 81 25 85 62 41 42 17 95 30 24 67 69 30 54 35 76\n",
- " 86]\n"
+ "X: [[2.5]\n [5.1]\n [3.2]\n [8.5]\n [3.5]\n [1.5]\n [9.2]\n [5.5]\n [8.3]\n [2.7]\n [7.7]\n [5.9]\n [4.5]\n [3.3]\n [1.1]\n [8.9]\n [2.5]\n [1.9]\n [6.1]\n [7.4]\n [2.7]\n [4.8]\n [3.8]\n [6.9]\n [7.8]]\nY: [[21]\n [47]\n [27]\n [75]\n [30]\n [20]\n [88]\n [60]\n [81]\n [25]\n [85]\n [62]\n [41]\n [42]\n [17]\n [95]\n [30]\n [24]\n [67]\n [69]\n [30]\n [54]\n [35]\n [76]\n [86]]\n"
]
}
],
"source": [
- "X = dataset.iloc[ : , : 1 ].values\n",
- "Y = dataset.iloc[ : , 1 ].values\n",
+ "X = dataset.iloc[ 0: 25, : 1 ].values\n",
+ "Y = dataset.iloc[ 0: 25, -1: ].values\n",
"print(\"X:\",X)\n",
"print(\"Y:\",Y)"
]
@@ -140,13 +131,23 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 74,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "[[7.8]\n [6.9]\n [1.1]\n [5.1]\n [7.7]\n [3.3]\n [8.3]\n [9.2]\n [6.1]\n [3.5]\n [2.7]\n [5.5]\n [2.7]\n [8.5]\n [2.5]\n [4.8]\n [8.9]\n [4.5]] [[1.5]\n [3.2]\n [7.4]\n [2.5]\n [5.9]\n [3.8]\n [1.9]]\n[[86]\n [76]\n [17]\n [47]\n [85]\n [42]\n [81]\n [88]\n [67]\n [30]\n [25]\n [60]\n [30]\n [75]\n [21]\n [54]\n [95]\n [41]] [[20]\n [27]\n [69]\n [30]\n [62]\n [35]\n [24]]\n"
+ ]
+ }
+ ],
"source": [
"from sklearn.model_selection import train_test_split\n",
"#拆分数据,0.25作为测试集\n",
- "X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0) "
+ "X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0) \n",
+ "print(X_train,X_test)\n",
+ "print(Y_train,Y_test)"
]
},
{
@@ -158,7 +159,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 75,
"metadata": {},
"outputs": [],
"source": [
@@ -177,11 +178,21 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 76,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "[[16.84472176]\n [33.74557494]\n [75.50062397]\n [26.7864001 ]\n [60.58810646]\n [39.71058194]\n [20.8213931 ]]\n[[20]\n [27]\n [69]\n [30]\n [62]\n [35]\n [24]]\n"
+ ]
+ }
+ ],
"source": [
- "Y_pred = regressor.predict(X_test)"
+ "Y_pred = regressor.predict(X_test)\n",
+ "print(Y_pred)\n",
+ "print(Y_test)"
]
},
{
@@ -200,18 +211,19 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 77,
"metadata": {},
"outputs": [
{
+ "output_type": "display_data",
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGkNJREFUeJzt3XuMXOV5x/Hv41uwHZBd24Cx8S7kQkkphGghUCpCcaBJg7ikrZRkQwiBOhdETEuaOKVSSlWTkgutkqiWXNvULUsuNaZcRBIMwWlQwNWaO5jWCfgO2GAMMUvq2vv0j/dMdmZ2Zmdm58ycd878PpK1e86OZ59g5+d3n/NezN0REZHONyHrAkREJB0KdBGRnFCgi4jkhAJdRCQnFOgiIjmhQBcRyQkFuohITijQRURyQoEuIpITk9r5zWbPnu29vb3t/JYiIh1v48aNL7v7nFqva2ug9/b2Mjg42M5vKSLS8cxsaz2vU8tFRCQnFOgiIjmhQBcRyQkFuohITijQRURyQoEuItKIgQHo7YUJE8LHgYGsK/qNtk5bFBHpaAMDsGgRDA2F661bwzVAf392dSU0QhcRqdd1142EecHQULgfAQW6iEi9tm1r7H6bKdBFROq1YEFD99vdblegi4jUa+lSmDat9N60aeF+mUK7fetWcB9pt7cy1BXoIiL16u+H5cuhpwfMwsflyys+EM2i3W7u3rp3L9PX1+fanEtEusGECWFkXs4Mhocbey8z2+jufTW/Z2NvKyIiY3njDZg+vXKYQ/U2fBoU6CIiKfn2t+Gtbx1ptRx2WOnXq7TbU6NAFxFp0osvhlbK5z8frq+4IozQV6yoq92eGq0UFRFpwMBAeLC5bVton7zznbBu3cjXt2+H+fPD5/397V1AqhG6iEidKk1FLIT5178e7hXCPAsKdBGROlWaighw7LHwhS+0v55yCnQRkTptrXKy544d7a2jGgW6iEgN+/aFB5vVtHIqYiMU6CIiYzjjDJg5c+R68uTSr7d6KmIjFOgiIhVs2hRG5Rs2jNwbHoabb25gKmKbd+fStEURkTLl7ZX16+F97wuf1z0VMYPDMDRCFxFJ3HlnaZi/5S1hKmIhzBuSwe5cGqGLSNdzD12RYlu3NvmwM4PDMDRCF5GuU9zanjGjNMwvvDAEfNMzVxo8DCMNCnQRiUcbHiKWr/Z87bWRr73xBtxxR0rfqIHDMNKiQBeROLTpiJ9qqz17ekbnb1MaOAwjLTrgQkSyU7zT1YQJcOjQ6Nf09MCWLal8u8FBOO20yl8bz8ET7VLvARd6KCoi2Sif1lcpzCG1h4hjrfSEeFZ7NkMtFxHJRrXeR7lxJG1xK37WrNFh3ubWdtso0EUkG/WMvMeRtOWt+L17R7728MPhXptb222jHrqIZKO3t/L2hRMnhmb2ggUhzBtM2mpvm2Irvu10SLSIxK3atL7Vq0Ogb9nScJj/6lfVt7ht4XqeaCjQRSQbKU/rM4Mjjqj+9Tw89KxFs1xEJDspHLr5zDPwO79Tem/atNLnrXl56FmLRugi0rHMSsN86dJ8P/SsRSN0Eek4t946OqCL53ekMPDvSBqhi0hHMSsN65/8pDTMgbYfLBELBbqIdIQ/+7PRC4Tc4Q/+oOyFbdoTJkZ1BbqZ/bmZPW1mT5nZd83sMDM7zsw2mNlmM/u+mU1pdbEi0n3efDME+YoVI/d27qwwKi/I4GCJWNQMdDObB3we6HP3k4CJwEeAG4F/cPd3AK8CV7SyUBHpPrNnl05VP/HEEOTHHDPGb8rgYIlY1NtymQRMNbNJwDTgBeBcYE3y9dXAxemXJyLdpLj1bQavvDLytQMHwhTFmjI4WCIWNQPd3XcC3wC2EYL8NWAjsM/dDyYv2wHMq/T7zWyRmQ2a2eCePXvSqVpEcqe89V1wwQXhevLkOt8og4MlYlFPy2UmcBFwHHAMMB34YIWXVuxouftyd+9z9745c+Y0U6uI5EzxiPwTn6i8+eKTTzb4phkcLBGLeuahvx943t33AJjZWuD3gBlmNikZpc8HdrWuTBHJm/Lt0Ks95BxX67tLJ6LX00PfBpxhZtPMzICFwDPAA8CfJK+5DEjrJD4R6QIt3A69a9XTQ99AePj5CPBk8nuWA18C/sLMfgHMAla2sE4RyZH//d/quyIW65LWd2rqWvrv7l8BvlJ2+zng9NQrEpFcq3UUXJPboXc1rRQVkbZ49tnRYT51aul1k9uhdz0Fuoi0fO8Ts7AoqGDevPAQ9J//uSsno7SMdlsU6Xbl000Ke59A0+m6ciVceWXpPe2K2DoaoYt0uxbtfWJWGuZ//ddj7L/SbjndjVEjdJFul/LeJ+efD+vWld6LJsihpT+RZE0jdJFul9LeJwcPhlF5cZj/9KeRhTnkejdGBbpIt0th7xOz0XutuMPZZ6dQX9pyvBujAl2k2zWx98nWraOnIr7ySoSj8mI53o1RPXQRGdd0k/IgnzgxtF2it3RpaQ8dcrMkVSN0EWnImjWjw3x4uEPCHHK9G6NG6CJSt/Ig/8xnYNmybGppSk4nwCvQRaSmj3989FTtqPvkXUqBLiJVDQ+H3nixu++GD30om3pkbAp0Eamo0q6IGpXHTQ9FRaRkJfyxx44O8127FOadQCN0kS5XvhJ+x47SryvIO4dG6CJdrtpRcAsWKMw7jQJdpMtVOwpu+/b21iHNU6CLdKnFi8c+Di4HK+G7jnroIl3GPTz8LDZlChw4MHKdk5XwXUcjdJEuMn366DB3h1WrcrkSvutohC7SBV57DWbMKL33y1/C8ceHz3O6Er7rKNBFck4LhLqHWi4iMUnxrMuHHhod5gcOKMzzTCN0kVikeNZleZC/732wfn3zJUrcNEIXiUUKZ13+7d+ODnN3hXm30AhdJBZNnnVZHuTLloX9yqV7KNBFYrFgQeVlmzVW+LztbfDcc6X31CfvTmq5iMRi6dKwoqfYGCt8hobCqLw4zJ96SmHezTRCF4lF4cHnddeFNsuCBSHMKzwQ1VREqUSBLhKTGit8nngCTjml9N7QEEyd2uK6pCMo0EU6RPmo/Ld/GzZtyqYWiZN66CKR+853Kk9FVJhLOQW6SETKF4qawdVXj3z9hhvUK5fq1HIRiUSlhaLFFORSi0boIpGodhTc0UcrzKU+CnSRSFQ7Cu6ll9pbh3QuBbpIxn7xCx0FJ+lQD10kQ2MFOegoOGlMXSN0M5thZmvM7Fkz22RmZ5rZb5nZOjPbnHyc2epiRaKQwp7lt9xSeSriLbfoKDgZP/M6nraY2WrgZ+6+wsymANOAvwL2uvvfm9kSYKa7f2ms9+nr6/PBwcE06hbJRvlUFAjD6AaStzzIr70WvvGNFGuU3DGzje7eV/N1tQLdzI4AHgeO96IXm9l/A+e4+wtmNhdY7+4njPVeCnTpeL29lZ9e9vTAli1j/tZLLoH/+I/Se5q9IvWoN9DrabkcD+wBbjazR81shZlNB45y9xcAko9HVilkkZkNmtngnj17GvifIBKhcexZfuhQGJUXh/l99ynMJX31BPok4D3AMnc/FXgDWFLvN3D35e7e5+59c+bMGWeZIpGoNuWkyn0zmFQ29cAdFi5MuS4R6gv0HcAOd9+QXK8hBPxLSauF5OPu1pQoEpE69yzfuXN0r3z3bo3KpbVqBrq7vwhsN7NCf3wh8AxwJ3BZcu8y4I6WVCgSk/7+8AB0jKkoZjB/fulvcwf9gCqtVu8sl3cDK4ApwHPA5YR/DH4ALAC2AX/q7nvHeh89FJU8u+suuPDC0nvDw7XnmovUUu9D0boWFrn7Y0ClN1MnUITRoX355bBqVTa1SPfS0n+RBhWvKzr88MoLhBTmkgUFukgDCuuKtm4Nwb1//8jX1q7VQ0/JlgJdpAHVtrjt6QkLh0SypEAXqdNLL1Xf4naMdUUibaPdFkXqUGumira4lRhohC4yhjvvHB3mdawrEsmEAl3yI4VtbYuZwUUXjVy/7W3hoWeNdUUimVHLRfKh0gnLixaFzxtM2/5+uPXW0nvFs1f6+xXgEieN0CUfKk0/GRoK9xtgVhrmX/+6piJK51CgSz40uK1teXfGrPICoS98IdUqRVpKgS750MC2tuWLg8qnIj7+uEbl0pkU6JIPdW5rC9UXB0EI8pNPbkF9Im2gQJd8qGNb24Jq3RntiiidTrNcJD/qmH4yVmhrcZB0Oo3QpStcc83YYa7FQZIHGqFL7pUH+ZIlcNJJoZe+bVsYmS9dqrnl0vkU6JIbAwOlIV1pI63yBUIieaKWi+RCramIDz6oqYiSfxqhSy7Umooo0g00Qpdc0FREEY3QJQc0FVEk0AhdOtbSpZqKKFJMI3TpSOVBfvnlsHChpiJKd9MIXTrKvHmVd0VctSqE95YtMDwcPo4Z5ikfhiESAwW6RK04d81g166Rr/3wh+OcwVJpjuOiRQp16XjmbZzT1dfX54ODg237ftLZyg8hKtbUX9ve3sqrjnp6wtBeJDJmttHd+2q9TiN0idYXv1g5zHt6mnzjBg/DEOkUCnSJUnl7pVjTudvAYRginUSBLlFZvbr2YqCmc7eBwzBEOommLUo0yoP8rLPg0UdL2y6p5G5h+ovmOErOaIQumfvABypPRXzwwboPIWpcQ3McRTqDRuiSmeFhmDix9N7atXDJJSPXdRxCJCIJBbpkolKfXLsiijRHLRdpq127Rof5jh0Kc5E0aIQubaNRuUhraYTeTTLav+SOO0aH+aFDCnORtGmE3i3K19EX9i+Blj51LA/y886De+9t2bcT6WoaoXeLSme0DQ2F+y3wiU9UnorYcJhrV0SRummE3i3atH+Je8jeYjffDJ/85DjeLKOfKkQ6Vd0jdDObaGaPmtndyfVxZrbBzDab2ffNbErrypSmtWH/ErPRYe4+zjCHtv9UIdLpGmm5LAY2FV3fCPyDu78DeBW4Is3CJGUt3L9k797R7ZXNm1N46KldEUUaUlegm9l84EPAiuTagHOBNclLVgMXt6JASUl/f0vW0ZvBrFml99zh7W9v6m0D7Yoo0pB6R+j/CHwRGE6uZwH73P1gcr0DmJdybZK2FPcveeCB0aPyAwdSnoqoXRFFGlIz0M3sAmC3u28svl3hpRX/r2xmi8xs0MwG9+zZM84yJSZmcO65I9ennBKCfPLklL9Ri36qEMmrmkfQmdlXgUuBg8BhwBHA7cAfAke7+0EzOxP4G3f/w7HeS0fQdbZrr4Wbbiq9p8VBIq2X2hF07v5ld5/v7r3AR4CfuHs/8ADwJ8nLLgPuaKJeiZxZaZh/85sKc5HYNDMP/UvA98zs74BHgZXplCQxmToVfv3r0nsKcpE4NRTo7r4eWJ98/hxwevolSQz274fDDy+99/jjcPLJ2dQjIrVp6b8ApSvszUaHubvCXCR2Wvovo1bYFxsaCm0XEYmfRuhScYU9hFmCCnORzqFA73I33BD2vKpEK+xFOosCvYuU70RrNvY+V1phL9JZ1EPvEpV2oi02bVpp20Ur7EU6j0boXaJan/yoo8IMFq2wF+l8NZf+p0lL/7NT6YDmwv3h4cpfE5E4pLb0Xzrbli3VwxzUJxfJE/XQc6w8yM1Kl+2rTy6SLxqh59Btt1U+oPnf/k19cpE80wg9Z8qD/IYb4MtfDp/39yvARfJMgZ4TV1wBq1aV3tOuiCLdRYHe4Q4dgkllf4o//zmceWY29YhIdhToHazS7BWNykW6lx6KdqAXXxwd5nv3KsxFup0CPTblG64MDJR82Qzmzh25PvroEOQzZ7b2+4pI/NRyiUmlDVcWLQJg3ZH9nH9+6cuHh8deNJTG99W0GJHOoaX/MentrbiXrVH6Z/SXfwlf+1rrvy89PWGpqYhkqt6l/xqhx2TbNj7Ht1nOZzjERAzHy7piLfn3t9rG59oQXaSjqIcekc9Nu5llXMUhJhHG5SN/PPfe28KHntU2dNFGLyIdRYEekeVvXgqMbopPnDDMeee18BsvXRo2dimmjV5EOo4CPRJvvgmHhiv/cVS7n5r+fm2ILpIDCvQMlM8QPO200QPkYhMntqGo/v7wAHR4OHxUmIt0HD0UbbNKMwSrHdJcUJhBKCIyFo3Q26zaUXBz5oSHnp/97MiIfOLEcP1P/9TeGkWkM2keeptNmFB5toqOghORanQEXYQuvbT61EPNEBSRZinQ22BwMIzAb7klXE+ZUvr1khmC2lNFRMZJgd5Chw7BqaeGWSwAs2eH/vmqVVVmCBaemG7dGobyhT1VFOoiUgf10Fvk9tvhwx8euf7xjxm1udYo2lNFRCrQXi4Z2b8/bGV78GC4PuccuP/+0EGpSXuqiEgT1HJJ0U03weGHj4T5k0/CAw/UGeagPVVEpCkK9BTs3Bn64ddeG66vuiq0wE86qcE30p4qItIEBXqTPv1pmD9/5HrXLvjOd8b5ZtpTRUSaoB76OD32WJjBUvCtb8HVV6fwxv39CnARGRcFeoOGh+H3fx8eeihcT58Ou3ePvbmWiEg7qOXSgHvuCfurFML8rrvCrJaGw1yLh0SkBTRCr8PQEMydC6+/Hq5PPx1+/vNxbmurA5lFpEVqjtDN7Fgze8DMNpnZ02a2OLn/W2a2zsw2Jx9ntr7c9lu2LLRVCmH+yCOwYUMTe5RX2m5xaCjcFxFpQj0tl4PAte5+InAGcJWZvQtYAtzv7u8A7k+uc+Oll8JEk899Llx/6lNhKmLxg9Bx0eIhEWmRmoHu7i+4+yPJ578CNgHzgIuA1cnLVgMXt6rIdlu8GI4+euR6+3ZYuTKlN9fiIRFpkYYeippZL3AqsAE4yt1fgBD6wJFpF9duzzwTRuXf+la4/trXwqi8eJ5507R4SERapO6Homb2VuA24Bp3f91s9On0VX7fImARwIJIR6HuYeOs++4L1xMmwL59YRl/6goPPq+7LrRZFiwIYa4HoiLSpLp2WzSzycDdwI/d/abk3n8D57j7C2Y2F1jv7ieM9T4x7rZ4//3w/vePXK9ZA3/8x9nVIyJSLrXdFi0MxVcCmwphnrgTuAz4++TjHeOsNRO//jUcdxy8+GK4/t3fDTNYJmkip4h0qHp66GcBlwLnmtljya8/IgT5eWa2GTgvue4IK1fC1KkjYf7ww/DEEwpzEels9cxyedDdzd1Pdvd3J7/ucfdX3H2hu78j+bi3JRWmuKry5ZfDQ88rrwzXH/1oWMr/3vemUqmISKbiXvqf4pFsS5bAnDkj188/D7feGgJeRCQP4g70FFZVbt4cQvvGG8P19deHfxt6e9MrU0QkBnF3jZtYVekOF14Id989cu/VV2HGjJRqExGJTNwj9HGuqvzZz0LLvRDmAwMh4BXmIpJncQd6g6sqDxyA44+Hs88O129/e7j3sY+1uE4RkQjEHegNHMk2MABveUt42AlhlL55M0ye3OaaRUQyEncPHWoeybZvH8ws2rj34oth7VrNXhGR7hP3CL2G668vDfP/+R+4/XaFuYh0p/hH6BU8/3zolRcsWQJf/Wp29YiIxCD6EXrxQtGeHjjzzNIwf/llhbmICEQe6OULRbdtC/uuAKxaFe7NmpVtjSIisYg60CstFIUwDf3yy9tfj4hIzKIO9GoLQrdvb28dIiKdIOpA1/GbIiL1izrQdfymiEj9og70BhaKioh0vejnoddYKCoiIomoR+giIlI/BbqISE4o0EVEckKBLiKSEwp0EZGcMHdv3zcz2wNsbeC3zAZeblE54xVjTRBnXTHWBHHWFWNNEGddMdYEra2rx93n1HpRWwO9UWY26O59WddRLMaaIM66YqwJ4qwrxpogzrpirAniqEstFxGRnFCgi4jkROyBvjzrAiqIsSaIs64Ya4I464qxJoizrhhrggjqirqHLiIi9Yt9hC4iInWKMtDNbJWZ7Tazp7KupcDMjjWzB8xsk5k9bWaLI6jpMDP7LzN7PKnp+qxrKjCziWb2qJndnXUtBWa2xcyeNLPHzGww63oKzGyGma0xs2eTv19nZlzPCcl/o8Kv183smixrKjCzP0/+rj9lZt81s8MiqGlxUs/TWf93irLlYmZnA/uBf3X3k7KuB8DM5gJz3f0RMzsc2Ahc7O7PZFiTAdPdfb+ZTQYeBBa7+8NZ1VRgZn8B9AFHuPsFWdcDIdCBPnePag6zma0GfubuK8xsCjDN3fdlXReEf5iBncB73b2RNSStqGUe4e/4u9z9TTP7AXCPu/9LhjWdBHwPOB04APwI+Ky7b86inihH6O7+n8DerOso5u4vuPsjyee/AjYB8zKuyd19f3I5OfmV+b/QZjYf+BCwIutaYmdmRwBnAysB3P1ALGGeWAj8MuswLzIJmGpmk4BpwK6M6zkReNjdh9z9IPBT4JKsioky0GNnZr3AqcCGbCv5TWvjMWA3sM7dM68J+Efgi8Bw1oWUceBeM9toZouyLiZxPLAHuDlpUa0ws+lZF1XkI8B3sy4CwN13At8AtgEvAK+5+73ZVsVTwNlmNsvMpgF/BBybVTEK9AaZ2VuB24Br3P31rOtx90Pu/m5gPnB68iNgZszsAmC3u2/Mso4qznL39wAfBK5KWntZmwS8B1jm7qcCbwBLsi0pSNo/FwL/nnUtAGY2E7gIOA44BphuZh/PsiZ33wTcCKwjtFseBw5mVY8CvQFJn/o2YMDd12ZdT7Hkx/T1wAcyLuUs4MKkX/094FwzuyXbkgJ335V83A3cTuh7Zm0HsKPoJ6s1hICPwQeBR9z9pawLSbwfeN7d97j7/wFrgd/LuCbcfaW7v8fdzya0ijPpn4MCvW7JA8iVwCZ3vynregDMbI6ZzUg+n0r4C/9sljW5+5fdfb679xJ+XP+Ju2c6igIws+nJw2ySlsb5hB+XM+XuLwLbzeyE5NZCILMH7WU+SiTtlsQ24Awzm5b8/3Eh4VlWpszsyOTjAuDDZPjfLMozRc3su8A5wGwz2wF8xd1XZlsVZwGXAk8mPWuAv3L3ezKsaS6wOpmJMAH4gbtHM00wMkcBt4ccYBJwq7v/KNuSfuNqYCBpcTwHXJ5xPST94POAT2ddS4G7bzCzNcAjhLbGo0SwOhO4zcxmAf8HXOXur2ZVSJTTFkVEpHFquYiI5IQCXUQkJxToIiI5oUAXEckJBbqISE4o0EVEckKBLiKSEwp0EZGc+H8Ad1Wk1CaNtgAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
+ "text/plain": "",
+ "image/svg+xml": "\r\n\r\n\r\n\r\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZyklEQVR4nO3de4ycdb3H8fe3LbcClWIvlNLuikFQESmuRTSpl4I5XBQ8XqJZawM1PUHQwiFKlRBzEpvDMdUAtgilXAqtEOQiBBBpAAUxFLcFpVgIot2lsG0Xyk0W6GW/54/fM+7M7MzuzOwz8zzPzOeVkN3nmd2dL1A+/Pb3fH+/n7k7IiKSPWOSLkBERGqjABcRySgFuIhIRinARUQySgEuIpJR4xr5ZpMmTfL29vZGvqWISOatX7/+ZXefXHy/oQHe3t5OV1dXI99SRCTzzKy71H1NoYiIZJQCXEQkoxTgIiIZpQAXEckoBbiISEYpwEVEqrFmDbS3w5gx4eOaNYmV0tA2QhGRTFuzBhYuhP7+cN3dHa4BOjsbXo5G4CIilbroosHwzunvD/cToAAXEalUT0919+tMAS4iUqmZM6u7T32nzBXgIiKVWrIExo8vvDd+fLhfQm7KvLsb3AenzOMKcQW4iEilOjthxQpoawOz8HHFirIPMOs9ZW6NPBOzo6PDtZmViLSCN9+ECRNKv2YGAwOV/ywzW+/uHcX3NQIXEYnZ0qXlwxuGnTKvivrARURismULzJgxeH3SSfDoo4XTKMNMmVdNI3ARkRicdVZhePf2wv33VzVlXjUFuIhIFYrbAn/ykxDO110XXl++PHScHHJIuO7shM2bw5z35s3xLtjUFIqISIVKraS/+OLw+UEHwYsvDu0yrCcFuIhIhUq1BQJMmQLbtjW+Hk2hiIhUqNyK+b6+xtaRowAXEanAjBlhbruUuNoCq6UAFxEZxuOPh4eUW7aUfj3OtsBqKcBFRMowg+OPH7zesAFWr66yLbCOu1npIaaISJFrr4UFCwavjzwSnnkmfD5rVhWtgHU+AEJ7oYiIRHbtgr33LrzX1weTJtX4A9vbQ2gXa2sLTeEV0l4oIiLDWLiwMLzPOSc8tKw5vKHuB0BoCkVEWs6aNaGnu6cHpk8f+oBy1y4YF0c6zpxZegQeU9uKRuAikh4NOPG9+JCF/PC+4YZwL5bwhqoPgKiWAlxE0qHex9dEyq2mbGuDefNifauqD4Colh5iikhy8ucyxoyBPXuGfk2VD/xGYlb+fjWHLDSSHmKKSLoUj7hLhTfE9sDv/PPLhzckt5pyNBTgIpKMcnMZxWpM1vzpdDO49NLB1/bbr/Brk1xNORoKcBFJRiUj6xqTtXhwn3PQQeH66qvrd8hCI6mNUESSUa7FbuzYMBk9c2YI7xqS9cILSw/u3/Oe8LGzM5uBXUwjcBFJRrkWu1WrRnV8jVk4WKGUmKbTU0MBLiLJiLnF7p57hn9ICdl8UDkcTaGISHJimssoDu7zz4errqrfafBpoRG4iGTW978/NLzd4ec/r+9p8GmhEbiIZM7OnbDPPoX3nn8eDj988LpZHlQORyNwEcmUww8vDO+pU8OoOz+8gYbsq5I0jcBFJBN6esJUSL533hk6EgfqfpBCWlQ0Ajez883saTPbaGY3mdm+Znawma01s+eijxPrXayItKbcPHbOueeGUXfJ8IbSqzz7+8P9JjJigJvZdOB7QIe7Hw2MBb4OLAYecPcjgAeiaxGR2Pz2t6UfUv7iFyN8Y50PUkiLSufAxwH7mdk4YDzwEnA6sCp6fRVwRvzliUgrKd6/5JRTBl+7/fbCZfHDKtfw3WSN4CMGuLu/CCwFeoBe4HV3vx+Y6u690df0AlNKfb+ZLTSzLjPr6uvri69yEWkq5fYvgXD9pS9V8cPqfJBCWlQyhTKRMNp+H3AosL+ZfbPSN3D3Fe7e4e4dkydPrr1SEWk6+SPu+fPLH7RQtTofpJAWlXShnAj80937AMzsduCTwDYzm+buvWY2DdhexzpFpMkUN4rEvh14CzSCVzIH3gN8wszGm5kBc4FNwF3A/Ohr5gN31qdEEWlGdd4OvCWMOAJ393VmdiuwAdgNPAGsAA4AbjGzBYSQ/2o9CxWR5lJqJ9liTThtHauKulDc/cfufpS7H+3u89z9XXd/xd3nuvsR0ccd9S5WRLLviiuG3zVw7NimnraOlVZiikjDFAf3XnvBrl2D1+PHK7Srob1QRKTu+4accELpBTnXXdf0jSJ1pRG4SKur474hpXYNfOwxOP74wR+vwK6dRuAira5O+4aYDQ1v98HwTlST7FSoABdpdTHvG/Lss0OnS954o4pl8PVWvOQz9xtHBkNcAS7S6mLcN8QMjjpq8HrKlJCRBx5YY2310EQ7FSrARVpdDPuGXH116YeU27bFUF/cmminQgW4SKsb5b4hZoPPPAEuvjhF0yWlNNFOhepCEZGa2kE+/Wl4+OHCe6kO7pwlSwq7biCzSz41AheRquzcGUbd+eH96KMZCW9oqp0KNQIXkYqVWgKfmeDO1yQN6BqBi8iInntuaHi/9lpGw7uJaAQuIsMqDu6JE2GHtq5LBY3ARaSka68t3Rqo8E4PBbiIDFlZbgYLFgy+fuGFmi5JI02hiLS4UntZ5VNwp5dG4CItrtzRZlOnKrzTTgEu0uLKHW22XceUp54CXKRFPf/88EebZXBlecvRHLhICxouuCGzK8tbjkbgIi3kxhuHhvfAAKxe3RQry1uORuAiLaI4uC+4AJYuDZ83ycrylqMAF2lyp54K995beE/dJc1BUygiaRLjWY27d4dRd354P/SQwruZaAQukhYxng7fNLsGyrA0AhdJixjOaty8eWh4v/KKwrtZaQQukhajPKuxOLjHjYNdu0ZZk6SaRuAiaVHjWY2/+lXp1kCFd/NTgIukRQ2nw5sVTo8vWhSmS0ZaqCPNQQEukhZVnNV4+uml9+q+9NIG1SqpoDlwkTQZYUXNnj1hbjvf2rVw4ol1rktSSQEukhFqDZRimkIRSbmenqHh3den8BYFuEiqlDrarK2t8GvcYdKkJKqTtNEUikhKjHS02cCAukukkEbgIilR7mizAw5Qa6CUpgAXSYlyR5u99VZj65DsUICLJGzPHh1tJrXRHLhIgnS0mYxGRSNwMzvIzG41s2fMbJOZnWBmB5vZWjN7Lvo4sd7FiqTGKPft3rJlaHhv26ajzaQ65hU0k5rZKuARd19pZnsD44EfATvc/RIzWwxMdPcLh/s5HR0d3tXVFUfdIskpbheBMFSuMG21IEeqZWbr3b2j+P6II3AzmwDMAa4BcPed7v4acDqwKvqyVcAZ8ZUrkmI17tt9222ldw1UeEutKplCORzoA64zsyfMbKWZ7Q9MdfdegOjjlFLfbGYLzazLzLr6+vpiK1wkMTXs220GX/nK4PW3v63WQBm9SgJ8HHAc8Et3nwW8BSyu9A3cfYW7d7h7x+TJk2ssUyRFqti3+xvfKL1r4NVX16EuaTmVBPgWYIu7r4uubyUE+jYzmwYQfdxenxJFUqaCfbtzqyZvvnnwS+65R9MlEq8RA9zdtwIvmNmR0a25wN+Au4D50b35wJ11qVAkbUbYt9sMxo4t/BZ3OOWUBGqVplZpF8qxwEpgb+AfwJmE8L8FmAn0AF919x3D/Rx1oUgze+klmD698N7WrTB1ajL1SPMo14VS0UIed38SGPLNhNG4SMtTa6AkQUvpRWqQv45HrYGSFAW4SJVy63i6uwuDes4ctQZKY2kvFJEqLVgA77479H653QRF6kUBLlKhgYGh3SX5hlnHI1IXCnCRClQyLaJtX6XRNAcuMoxSBwpfdtmI63hEGkIBLs1jlFu8Fit3oPD3vjfsOh6RhlGAS3Mobg3p7g7XNYT4jTcOHXXv2VPYcdLZCZs3h3nxzZsV3pIMBbg0hxq3eC1mBt/61uD17NkhuMfovxRJIf2xlOZQ5RavxbMtRx1VetfAdetKfbdIOijApTlUscVrqdmWZ58dfH3lSq2klGxQgEtzqGCL15xSsy057mGhjkgWKMClOYywxWu+crMtWgIvWaOFPNI8OjtHbAcZLqS1EEeyRiNwaQk33zx8eGshjmSRAlyanlk4mzJn1ixYvVoLcST7NIUiTWPNmvCAsqcnTIcceCBs3Fj4NcWLcUSyTCNwaQqlWgPzw/vKK9UaKM1HI3BpCiO1Boo0I43ApSmoNVBakUbgknlqDZRWpRG4ZNavf63WQGltCnDJJDP42tcGrz/8YbUGSutRgEumnHZa6V0DN26sco/umA9/EEmCAlxSLT9nzeCeewZfW7asxg6TGA9/EEmSeQN7rDo6Oryrq6th7yfZlsvZUu2Bo/pj294eQrtYW1sYuoukjJmtd/eO4vsagUtqLV5cOryLz6msWpWHP4iklQJcUskMtmwp/dqoc7aKwx9E0kwBLqly770jL74Zdc5WcfiDSJppIY+kRnFwv//90NtbOI0SS87m2lPyd75askQ9h5I5GoFL4s48s3Rr4N//XvEhO9WrqudQJJ00ApfEuIf2wHxXXRU6T3IqOGRHpGUpwCURpea5tWugSHU0hSIN9corQ8P72WcV3iK10AhcGkajbpF4aQTeShLa/+P++4eG986dCm+R0dIIvFUUr0vP7f8BdX1KWBzcs2bBhg11ezuRlqIReKsodeZYf3+4XwcLF5ZuDaw6vLVroEhZGoG3igbt/1GqNXDZMjjnnBp+WEK/NYhkRcUjcDMba2ZPmNnd0fXBZrbWzJ6LPk6sX5kyag3Y/8NsaHi71xje0PDfGkSyppoplEXAprzrxcAD7n4E8EB0LWlVx/0/Xn116HTJM8/E8JBSuwaKDKuiADezw4BTgZV5t08HVkWfrwLOiLc0iVVnZ13WpZvBwQcX3nOHI48c1Y8NtGugyLAqHYFfCvwAGMi7N9XdewGij1Nirk3iFuP+Hw880IDWQO0aKDKsEQPczE4Dtrv7+lrewMwWmlmXmXX19fXV8iMkZczgxBMHrz/ykRDce+0V8xvV6bcGkWYx4pFqZva/wDxgN7AvMAG4Hfg48Bl37zWzacDv3X3YX5x1pFq2nXsuLF9eeE+LcUTqr+Yj1dz9h+5+mLu3A18HHnT3bwJ3AfOjL5sP3BljvZIyZoXhfdllCm+RpI2mD/wS4BYzWwD0AF+NpyRJE+1fIpJeVa3EdPffu/tp0eevuPtcdz8i+rijPiVKIxQveLz66qHh/fTTCm+RNNFKTBl2wWOOglskfbQXipRc8JjzzjsKb5G0UoBL2YWNZrDPPo2tRUQqpwBvceedV36ErQWPIummAG8hxQ8qzUI7YCla8CiSfgrwFpF7UNndHUbc3d2Fr69erQWPIlmjLpQWUe5B5bRp8NJL4XMFtki2aATeIopH3Dlbtza2DhGJjwK8yT35ZOnVlDl6UCmSXZpCaWLFwT12LOzZM3itB5Ui2aYReBO6/PLSBwqvWqUHlSLNRCPwJlMc3NdfD/OjPSM7OxXYIs1EAd4kTjgBHnus8J6WwIs0NwV4xvX3w/77F9579ln4wAeSqUdEGkcBnmHaq1uktekhZgb99a9Dw1u7Boq0HgV42hRvWLJmTcHLZvDRjw5en3xyCO5R7xo4wvuKSPpoCiVNhjlZYflrnZx7buGXxzbiHu5EB7WtiKTWiKfSx0mn0o+gvb3kmnej8N/RNdfAWWfV/31pa4PNm2N8IxGpRc2n0ksD9fTwHX7BOHZhDGDsGRLe7jGHd/S+Vd0XkVRQgKfId8Zfxy85hz2MA4z8fz2bNtXxIWW5DVG0UYpIqinAU2TF2/MIwV1o7JgBjjqqjm+8ZEnYGCWfNkoRST0FeEps3w57Bkr/6yh3PzadnWFjFG2UIpIpCvAEFHfsTZoEU6eW//qxYxtQVGdneGA5MBA+KrxFUk9thA1WqmNvJLmOPhGRfBqBN1i5o80OOSQ8pDz77MER99ix4fqKKxpbo4hkg/rAG2zMmNLdJGZh9kJEpJj6wBM2MBC2fC33/0t17IlItRTgDXD33WE6JLdfd/G+JQUde9qTREQqpACvo7feCnt1f+EL4Xr2bNi9OyyFL9mxl3vC2d0dhuq5PUkU4iJSgubA6+Tyy2HRosHrDRtg1qwRvkl7kohICeXmwNVGGLPeXjj00MHrBQtg5coKv1l7kohIFTSFEqOzzy4M7y1bqghv0J4kIlIVBXgMcifkXHlluP7Zz8IU9vTpVf4g7UkiIlXQFMooDAzAnDnw6KPhep994OWX4YADavyBueXrF10Upk1mzgzhrWXtIlKCRuA1uvfe0BqYC+/f/CacS1lzeOdoTxIRqZBG4FXq7w/L3t98M1zPng1/+lODNpwSEcmjEXgVli0Lfd258F6/HtatqyG8tVhHRGKgEXgFtm6FadMGr6tqDSymA4RFJCYagY/g3HMLw/uFF0YR3lB6O8L+/nBfRKQKIwa4mc0ws4fMbJOZPW1mi6L7B5vZWjN7Lvo4sf7lNs5TT4XWwOXLw/XSpaE18LDDRvmDtVhHRGJSyQh8N3CBu38Q+ARwjpl9CFgMPODuRwAPRNeZl2sNPOaYcL333mHO+4ILYnoDLdYRkZiMGODu3uvuG6LP3wQ2AdOB04FV0ZetAs6oV5GNct994YHkI4+E6zvugHffjaE1MJ8W64hITKp6iGlm7cAsYB0w1d17IYS8mU0p8z0LgYUAM1M6yuzvD/Pcb7wRro87Dh5/vE6tgVqsIyIxqXg3QjM7APgDsMTdbzez19z9oLzXX3X3YefB07gb4fLl4UFlTlcXfOxjydUjIlJsVLsRmtlewG3AGne/Pbq9zcymRaPvacD2+Mqtv+LWwPnz4frrEytHRKRqlXShGHANsMndf5730l3A/Ojz+cCd8ZdXH9/9bmF49/QovEUkeyrpQvkUMA/4nJk9Gf11CnAJcJKZPQecFF3HL8ZVixs3htbAZcvC9U9/GloDZ8yIpVIRkYYacQrF3f8IWJmX58ZbTpGYVi0ODMBnPwsPPxyux4yB116DAw+MuV4RkQZK90rMGFYt/u53oZskF9633QZ79ii8RST70r0XyihWLb79dlg1uWNHuD72WPjzn2Fcuv+ORUQqlu4ReI2rFq+8MqyNyYX344/DE08ovEWkuaQ7wKtctbhtW3hIefbZ4XrevPCQ8uMfr3OdIiIJSHeAd3bCihXQ1haSua0tXJd4gHneeeGghZzubrjhhgbWKiLSYOmfVOjsHLbj5Omn4eijB68vuQQuvLABdYmIJCz9AV7GwACcdBI8+ODgvddfhwkTkqtJRKSR0j2FUsbataE1MBfet94a5roV3iLSSlIf4PkLMWfODP3bn/98eO2YY2DXLvjylxMtUUQkEameQileiPnCC4OvrVsXToQXEWlVqR6Bl1qICaEZReEtIq0u1QGu4yNFRMpLdYDr+EgRkfJSHeA6PlJEpLxUB3gVCzFFRFpOqrtQYMSFmCIiLSvVI3ARESlPAS4iklEKcBGRjFKAi4hklAJcRCSjzN0b92ZmfUB3hV8+CXi5juXUSnVVLo01QTrrSmNNkM660lgT1LeuNnefXHyzoQFeDTPrcveOpOsoproql8aaIJ11pbEmSGddaawJkqlLUygiIhmlABcRyag0B/iKpAsoQ3VVLo01QTrrSmNNkM660lgTJFBXaufARURkeGkegYuIyDAU4CIiGZW6ADeza81su5ltTLqWfGY2w8weMrNNZva0mS1KQU37mtnjZvaXqKb/SbqmHDMba2ZPmNndSdeSY2abzewpM3vSzLqSrifHzA4ys1vN7Jnoz9cJCddzZPTPKPfXG2Z2XpI15ZjZ+dGf9Y1mdpOZ7ZuCmhZF9Tzd6H9OqZsDN7M5wL+AG9z96KTryTGzacA0d99gZgcC64Ez3P1vCdZkwP7u/i8z2wv4I7DI3R9LqqYcM/tvoAOY4O6nJV0PhAAHOtw9VYtAzGwV8Ii7rzSzvYHx7v5a0nVB+B8x8CJwvLtXugivXrVMJ/wZ/5C7v21mtwD3uvv1CdZ0NHAzMBvYCdwHnO3uzzXi/VM3Anf3h4EdSddRzN173X1D9PmbwCZgesI1ubv/K7rcK/or8f8jm9lhwKnAyqRrSTszmwDMAa4BcPedaQnvyFzg+aTDO884YD8zGweMB15KuJ4PAo+5e7+77wb+AHypUW+eugDPAjNrB2YB65Kt5N9TFU8C24G17p54TcClwA+AgaQLKeLA/Wa23swWJl1M5HCgD7gumnJaaWb7J11Unq8DNyVdBIC7vwgsBXqAXuB1d78/2arYCMwxs/ea2XjgFGBGo95cAV4lMzsAuA04z93fSLoed9/j7scChwGzo1/pEmNmpwHb3X19knWU8Sl3Pw44GTgnmq5L2jjgOOCX7j4LeAtYnGxJQTSd80Xg10nXAmBmE4HTgfcBhwL7m9k3k6zJ3TcB/wesJUyf/AXY3aj3V4BXIZpnvg1Y4+63J11PvujX7t8D/5FwKZ8CvhjNN98MfM7MVidbUuDuL0UftwN3EOYtk7YF2JL3m9OthEBPg5OBDe6+LelCIicC/3T3PnffBdwOfDLhmnD3a9z9OHefQ5j+bcj8NyjAKxY9MLwG2OTuP0+6HgAzm2xmB0Wf70f4A/5MkjW5+w/d/TB3byf8+v2guyc6SgIws/2jh89EUxSfJ/z6myh33wq8YGZHRrfmAok9GC/yDVIyfRLpAT5hZuOj/x7nEp5FJcrMpkQfZwL/SQP/maXuUGMzuwn4DDDJzLYAP3b3a5KtCggjy3nAU9GcM8CP3P3eBGuaBqyKOgXGALe4e2ra9lJmKnBH+O+eccCv3P2+ZEv6t+8Ca6Ipi38AZyZcD9F87knAfyVdS467rzOzW4ENhGmKJ0jHsvrbzOy9wC7gHHd/tVFvnLo2QhERqYymUEREMkoBLiKSUQpwEZGMUoCLiGSUAlxEJKMU4CIiGaUAFxHJqP8H2tVcQ6yarHcAAAAASUVORK5CYII=\n"
},
- "metadata": {},
- "output_type": "display_data"
+ "metadata": {
+ "needs_background": "light"
+ }
}
],
"source": [
@@ -231,18 +243,19 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 78,
"metadata": {},
"outputs": [
{
+ "output_type": "display_data",
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGuxJREFUeJzt3XuUldV9//H3V64iQbwMSCAwJBpN/KmoU2KqMS0EWzU1rtakMeNPVpZm0p9pE8uvLSpdjXSVLE2MMckyRpQoy4z3SHB5qwSxDckKcUBRBC1gGFDIMCgKMiiX+faP/Yxnnrkw5/6c85zPay3Wmb3nDOd7VD5+2efZ+zF3R0REqt9hSRcgIiLFoUAXEUkJBbqISEoo0EVEUkKBLiKSEgp0EZGUUKCLiKSEAl1EJCUU6CIiKTG4nC927LHHen19fTlfUkSk6q1cuXKHu9cN9LyyBnp9fT0tLS3lfEkRkapnZq3ZPE9LLiIiKaFAFxFJCQW6iEhKKNBFRFJCgS4ikhIKdBGREmluhvp6OOyw8NjcXNrXK+tliyIitaK5GZqaoKMjjFtbwxigsbE0r6kOXUSkBObMyYR5l46OMF8qCnQRkRLYvDm3+WJQoIuIFNHBg3DKKeDe9/cnTizdayvQRUSK5IknYPBgWLMmjIcNi39/xAiYN690r69AFxEp0Pvvw5gxcOGFYXzOOaFTX7AAJk0Cs/A4f37pPhAFXeUiIlKQ5ma47LLMuKUFzjwzfN3YWNoA70mBLiKSh927YdSozPiSS+DBB0M3nhQtuYiI5OjHP46H+SuvwEMPJRvmoA5dRCRrO3ZAXbfbTFx1Fdx6a3L19KQOXUQkC9dfHw/zLVsqK8xBgS4ickhbtoSllLlzw/j668M15hMmJFpWn7TkIiLSj6uugttuy4zb2+HYY5OrZyDq0EVEenj11dCVd4X5j38cuvJKDnNQhy4i8gH3cPnhI49k5nbvhpEjk6spF+rQRUSAlSvDueVdYd7cHAK+WsIc1KGLSI3r7ITPfAZ++9swHjs2nF3e8xyWajBgh25mJ5rZC91+7TKzq83saDNbYmbro8ejylGwiEixLFsGgwZlwvzxx+GPf6zOMIcsAt3dX3X3Ke4+BTgT6AAWAdcAS939BGBpNBYRqXj798Pxx8O0aWF86qlw4ABccEGydRUq1zX06cBGd28FvgAsjOYXAhcXszARkVJYtAiGDoWNG8N4+XJYvTp06tUu1zX0LwP3RV+PdfdtAO6+zczGFLUyEZEi2rs3HHH77rthfN558NRTyZ+/UkxZd+hmNhS4CHgolxcwsyYzazGzlvb29lzrExEp2M9+Fm4u0RXmq1fDf/5nGcK8uRnq68PlM/X1YVxCuXTo5wOr3L0tGreZ2bioOx8HbO/rh9x9PjAfoKGhoZ+bMomIFN8778Do0ZnxZZfBPfeU6cWbm6GpKXOn6NbWMIaSHZKeyxr6pWSWWwAeBWZGX88EFherKBGRQt10UzzMN24sY5gDzJmTCfMuHR1hvkSy6tDNbAQwA/h6t+kbgAfN7ApgM/DF4pcnIpKbtjY47rjMeNYs+P73Eyhk8+bc5osgq0B39w7gmB5zbxKuehERqQizZ8N3v5sZb90K48YlVMzEiWGZpa/5EtHWfxGpeps2hQ84u8L8O98J2/YTC3OAefPCJ7HdjRgR5ktEW/9FpKp99atw992Z8VtvwVGVsG+964PPOXPCMsvEiSHMS3jXaAW6iFSlNWvglFMy4/nz4WtfS66ePjU2ljTAe1Kgi0hVcYcLL4QnnwzjYcNCV95zdaMWaQ1dRKrG734X9uh0hflDD8F77ynMu6hDF5GKd/AgTJ0Kq1aF8aRJsH49DBmSbF2VRh26iFS0p5+GwYMzYb5kSbiqRWHemzp0EalI+/bBxz4Gr78exp/6VDi3/DC1of3SPxoRqTgPPhg+7OwK8xUrMuvn0j916CJSMfbsCeevHDgQxhddBL/8ZbqOuC0l/f9ORCrC7beHGzJ3hfnLL8PixQrzXKhDF5FEvfUWHNPtpKgrr4Q77kiunmqmDl1EEjNvXjzMN21SmBdCHbqIlN3WrTB+fGZ87bXhQC0pjAJdRMrq6qvhhz/MjNvawr0+pXBachGRstiwIXzA2RXmN98czmVRmBePOnQRKblLL4X778+M33kHRo1Krp60UocuIiXzwguhK+8K87vvDl25wrw01KGLSNG5w/TpsGxZGI8eDdu2wfDhydaVdurQRSQ7zc1QXx/239fXh3Effv3r8JSuMF+8GHbuVJiXgzp0ERlYczM0NUFHRxi3toYxfHBHngMH4LTTYO3aMH3SSfDSS+GkRCkPdegiMrA5czJh3qWjI8wDjz0WjrPtCvNnn4V16xTm5aZ/3CIysM2b+5x+r7WN8ceE7fsAn/0sPPOMTkVMiv6xi8jAJk6kmUup5w8cxkHq+QP/j1s5nL0fhPmqVaEzV5gnR//oRWRAzRf8nCbuoJV6nMNopZ6fchUAX/oSdHbC6acnXKRkF+hmNtrMHjazV8xsnZl92syONrMlZrY+ejyq1MWKSDLmPHEOHRzRa/7DH4YHHtARt5Ui2w79h8BT7n4ScBqwDrgGWOruJwBLo7GIpFA/S+hs21beOuTQBgx0MxsFnAssAHD3fe7+NvAFYGH0tIXAxaUqUkSSYxY2CvVl4sTy1iKHlk2H/lGgHbjLzJ43szvN7AhgrLtvA4ge+zxix8yazKzFzFra29uLVriIlNZvfnPopZQRI8J55lI5sgn0wcAZwG3ufjqwhxyWV9x9vrs3uHtDXV1dnmWKSDmZwTnnZMavvgo//zlMmhS+N2kSzJ//wZ4iqRDZBPrrwOvuviIaP0wI+DYzGwcQPW4vTYkiUi49b8j8yU+G5ZaPfzyE96ZN4YqWTZsU5pVowI1F7v5HM9tiZie6+6vAdGBt9GsmcEP0uLiklYpIybj3vn582zY47rhk6pH8ZHuVyz8AzWb2IjAF+A4hyGeY2XpgRjQWkSpz223xML/oohDwCvPqk9XWf3d/AWjo41vTi1uOiJTLwYO9z1rZtQs+9KFk6pHCaaeoSA3613+Nh/k3vxm6coV5ddPhXCI1ZO/ecLlhd/v2hZMSpfqpQxepEZdfHg/z730vdOUK8/RQhy6Scm+9BcccE5/r7NT5K2mkDl0kxc45Jx7m994bunKFeTqpQxdJodbWcNvP7vo7j0XSQx26SMrU1cXD/Fe/UpjXCnXoIimxejVMmRKfU5DXFgW6SAr0XBN//vne4S7ppyUXkSr2zDPxMD/mmNCVK8xrkzp0kSrVsyv/wx96fxAqtUUdukiVue++eJh/+tOhK1eYizp0kSrR1xG3O3b03jQktUsdukgVuPnmeJg3NoaAV5hLd+rQRSrY/v0wdGh8bs+e3gdsiYA6dJGKNWtWPMyvuy505Qpz6Y86dJEK8+67vc8l37+/980oRHpShy5SQf76r+Nh/pOfhK5cYS7Z0H8mIhWgra33PTx1xK3kSh26SMJOPTUe5o88oiNuJT/q0EUSsmEDnHBCfE6HaUkh1KGLJGDYsHiYL1+uMJfCqUMXKaPnnoOpU+NzCnIpFgW6SJn0XBNfuxY+8YlkapF00pKLSIk98UQ8zCdPDl25wlyKLasO3cw2AbuBg8ABd28ws6OBB4B6YBPwJXffWZoyRapPX4dpvfEGfPjDydQj6ZdLh/7n7j7F3Rui8TXAUnc/AVgajUUEuOuueJifd14IeIW5lFIha+hfAP4s+noh8Cwwu8B6RKpaZycMGhSfe/ttOPLIZOqR2pJth+7A02a20syaormx7r4NIHoc09cPmlmTmbWYWUt7e3vhFYtUqP/4j3iYf/3roStXmEu5ZNuhn+3uW81sDLDEzF7J9gXcfT4wH6ChoUEXaEnqvP8+DB8en3vvvXCtuUg5ZdWhu/vW6HE7sAiYCrSZ2TiA6HF7qYoUqVRNTfEwnzcvdOUKc0nCgB26mR0BHObuu6OvzwP+HXgUmAncED0uLmWhIpXk7bfhqKPicwcP9r6qRaScsvnPbyyw3MxWA78HHnf3pwhBPsPM1gMzorFI6n3uc/Ewv/vuvi9RFCm3ATt0d38NOK2P+TeB6aUoSqQSvfEGTJgQn9O2fakk6ilEslBfHw/zJ59UmEvl0VkuIoewdi2cfHJ8TkEulUodukg/zOJh/txzCnOpbAp0kR6WL48fpjV8eAjyhob+f0akEmjJRaSbnkfcrl8Pxx+fTC0iuVKHLkK4j2f3MD/ttNCVK8ylmqhDl5rW1/XjbW0wps+TiUQqmzp0qVk/+Uk8zP/mb0LAK8ylWqlDl5pz4AAMGRKf270bRo5Mph6RYlGHLjXl2mvjYT5rVujKFeaSBurQpSZ0dMARR8Tn9u3r3amLVDN16JJ6X/lKPMx/8IPQlSvMJW3UoUtqvfkmHHtsfK6zs/e15iJpoQ5dUumss+Jh/sADoStXmEuaqUOXVNm0CSZPjs/p/BWpFerQJTWOPjoe5suWKcyltqhDl6r3wgtw+unxOQW51CIFulS1nmviq1fDqacmU4tI0rTkIlXpV7+Kh/nYsaErV5hLLVOHLlWnZ1fe2goTJyZTi0glUYcuVePee+Nh/pnPhK5cYS4SqEOXitfZCYMGxefefDNc1SIiGerQpaLddFM8zGfODF25wlykN3XoUpH27YNhw+JzHR1w+OHJ1CNSDbLu0M1skJk9b2aPRePJZrbCzNab2QNmNrR0ZUot+eY342H+b/8WunKFucih5dKhfwtYB4yKxjcCP3D3+83sp8AVwG1Frk9qyO7dMGpUfO7Agd7r5yLSt6w6dDObAFwI3BmNDZgGPBw9ZSFwcSkKlPRqbob6+nAbuBEj4mF+++2hK1eYi2Qv2w79FuBfgA9F42OAt939QDR+HRhf5NokxZqboakprIsD7N2b+Z6OuBXJz4Adupl9Htju7iu7T/fx1D5PzzCzJjNrMbOW9vb2PMuUtJkzJxPm3U2apDAXyVc2Sy5nAxeZ2SbgfsJSyy3AaDPr6vAnAFv7+mF3n+/uDe7eUFdXV4SSpdr9z/+E3Z192by5vLWIpMmAge7u17r7BHevB74MPOPujcAy4JLoaTOBxSWrUlJj0CA48cT+v69dnyL5K2Rj0WxglpltIKypLyhOSZJGK1aEpZTOzszciBHx54wYAfPmlbcukTTJKdDd/Vl3/3z09WvuPtXdj3f3L7r7+6UpUaqdWbglXJdXXglXsMyfn1kznzQpjBsbk6tTpNpp67+UzOOPxz/g/PjHQ5B3Lbk0NoZbxnV2hkeFuUhhtPVfis49XFve3datMG5cMvWI1Ap16FJUCxbEw/yCC0LAK8xFSk8duhTFwYMwuMd/Te+803srv4iUjjp0KdjcufEw/8Y3QleuMBcpL3Xokrf33ut9AuL778NQnbspkgh16JKXK6+Mh/kNN4SuXGEukhx16JKTnTt73y3o4MHeV7WISPnpj6Fkbdq0eJjfc0/flyiKSDL0R1EGtGVL2CC0bFlmzh0uu6zA37j7gej19WEsInlToMshTZgQPzDr6adDmBes60D01tbwG7a2hrFCXSRvCnTp05o1oSt/443MnDvMmFGkF+jrQPSOjjAvInlRoEsvZnDKKZnxypVF6sq76+/gcx2ILpI3BXqN676Mfdxx8cO0Ro0KQX7GGSV44f4OPteB6CJ5U6DXsJ7L2G1tme+99lrYul8y8+bpQHSRIlOg17BD3ddz8uQSv3hjow5EFyky86IvjvavoaHBW1payvZ60r9DXT/e885CIpIsM1vp7g0DPU8deg360Y8OvRlIy9gi1Ulb/2vIgQMwZEh87vDDYe/ezFjL2CLVSx16jZg9Ox7ms2eHZZc77tAytkhaqENPuT17YOTI+Nz+/ZnzyxsbFeAiaaEOPcX+9m/jYf6jH4WuvOedhUQkHfRHO4Xa22HMmPhcZ2d805CIpI869JT5kz+Jh/lDD4WuXGEukn7q0FPitdfgYx+Lz5Vxi4GIVIABO3QzG25mvzez1Wb2spnNjeYnm9kKM1tvZg+YmW4+lpBRo+Jh/l//pTAXqUXZLLm8D0xz99OAKcBfmtlZwI3AD9z9BGAncEXpykyRIt7UYdWqsJSye3dmzh3OPbfgKkWkCg0Y6B68Gw2HRL8cmAY8HM0vBC4uSYVpUsSbOpjBmWdmxmvWqCsXqXVZfShqZoPM7AVgO7AE2Ai87e4Hoqe8DowvTYkpUoSbOjz9dPwDzo98JAT5yScXqUYRqVpZfSjq7geBKWY2GlgEfKKvp/X1s2bWBDQBTKz1Q0IKvKlDzytVtmwJt4gTEYEcL1t097eBZ4GzgNFm1vU/hAnA1n5+Zr67N7h7Q11dXSG1Vr88b+pwzz3xMJ82LXTlCnMR6S6bq1zqos4cMzsc+BywDlgGXBI9bSawuFRFpkaON3Xo2gx0+eWZuZ07YenSEtYoIlUrmw59HLDMzF4EngOWuPtjwGxglpltAI4BFpSuzJTI4aYON94IgwZlxldeGbry0aPLWK+IVBXd4KLC7NsHw4bF5/buheHDk6lHRJKnG1xUob//+3iYz50bunKFuYhkQ1v/K8CuXXDkkfG5AwfiSy4iIgNRh15mPTeKnnZaPMzvvDN05WUL8yLuXBWRZKlDL6OujaJde4taW+PfL/sRt30V1NQUvtZdL0Sqjjr0MuproyhAXV1CR9wWYeeqiFQOBXoZ9bchdMeO8tbxgQJ3ropIZVGgl8n11/d/eFZiJyLkuXNVRCqTAr3EtmwJSylz54bxkCHx7x9io2jp5bhzVUQqmwK9hK66Kt7s7tgBd92V1UbR8shh56qIVD7tFC2BV1+Fk07KjG+9NYS7iEg+st0pqssWi8gdLrkEHnkkjM3CpqGRI5OtS0Rqg5ZcimTlyrA3pyvM7703XFeuMBeRcqnNQC/i7sjOTjj7bGiI/jI0bhy89x5cemlRKhURyVrtBXoR7+u5bFnYov/b34bxE0/A1q29T0sUESmH2gv0IuyO3L8fjj8+3DkIYMqUcJjW+ecXsU4RkRzVXqAXuDty0SIYOhQ2bgzj3/wGnn9eJyOKSPJq7yqXiRN7n4rVNX8Ie/fCmDHw7rth/Bd/AU8+mcD5KyIi/ai9Dj2P3ZE/+1l4SleYv/giPPWUwlxEKkvtBXoOuyPfeSc85Yorwvjyy8PnqKecUuaaRUSyUHtLLhDCe4Dt7TfdBP/8z5nxxo3w0Y+WuC4RkQLUZqAfQlsbHHdcZvxP/wTf+15y9YiIZKv2llwOYfbseJhv26YwF5HqoUAHNm0Ka+Xf/W4Y33hjWCvvHu4iIpWuJpdcmpvDPqLNm8PVK3v2ZL63cyeMHp1cbSIi+aq5Dr3nzv+uML/yyjBWmItItRow0M3sI2a2zMzWmdnLZvataP5oM1tiZuujx6NKVmURD9O67rq+b9S8ZEnev6WISEXIpkM/APx/d/8EcBbwDTP7JHANsNTdTwCWRuPiK+JhWlu26L7IIpJeAwa6u29z91XR17uBdcB44AvAwuhpC4GLS1JhEQ7T6uyE22+Hk0/uf3en7ossItUupzV0M6sHTgdWAGPdfRuE0AfG9PMzTWbWYmYt7e3tuVdYYEu9YQNMnw5/93cwdSp8//u6L7KIpFPWgW5mI4FfAFe7+65sf87d57t7g7s31NXV5V5hf63zAC31wYMhvE89FVatgjvuCOvk//iPui+yiKRTVoFuZkMIYd7s7tFN1mgzs3HR98cB20tSYR6Haa1ZA3/6p2GX54wZsHZtuIqla7mlsTFce97ZGR4V5iKSBtlc5WLAAmCdu9/c7VuPAjOjr2cCi4tfHjkdprVvH8ydC2ecAa+9BvfdB7/8JYwfX5LKREQqirn7oZ9gdg7wa+AloDOavo6wjv4gMBHYDHzR3d861O/V0NDgLS0thdbcp+eeC6civvQSfOUrcMstkM8Kj4hIpTGzle7eMNDzBtwp6u7Lgf5O/p6ea2HFtncvfPvbYb183Dh49FH4q79KuioRkfKr6q3///3foSvfsAG+9rVwkNaRRyZdlYhIMqpy6/+uXXDVVfDZz4YPNpcuDcvqCnMRqWVVEejdd/6PHQuTJ8NPfxouQXzxRZg2LekKRUSSV/FLLl07/7s2i27fHi52+fa3wy8REQkqvkPva+e/O9x1VzL1iIhUqooPdB2mJSKSnYoP9Dx3/ouI1JyKD/Q8dv6LiNSkig/0HHb+i4jUtIq/ygVCeCvARUQOreI7dBERyY4CXUQkJRToIiIpoUAXEUkJBbqISEoMeIOLor6YWTvQWrYXzM+xwI6kiyiiNL2fNL0XSNf70XsprUnuPuAte8oa6NXAzFqyuTNItUjT+0nTe4F0vR+9l8qgJRcRkZRQoIuIpIQCvbf5SRdQZGl6P2l6L5Cu96P3UgG0hi4ikhLq0EVEUkKBHjGzj5jZMjNbZ2Yvm9m3kq4pX2Y23Mx+b2aro/cyN+maCmVmg8zseTN7LOlaCmVmm8zsJTN7wcxakq6nUGY22sweNrNXoj8/n066pnyY2YnRv5OuX7vM7Oqk68qFllwiZjYOGOfuq8zsQ8BK4GJ3X5twaTkzMwOOcPd3zWwIsBz4lrv/LuHS8mZms4AGYJS7fz7pegphZpuABnevtGud82JmC4Ffu/udZjYUGOHubyddVyHMbBDwBvApd6/0vTMfUIcecfdt7r4q+no3sA4Yn2xV+fHg3Wg4JPpVtf/nNrMJwIXAnUnXInFmNgo4F1gA4O77qj3MI9OBjdUU5qBA75OZ1QOnAyuSrSR/0RLFC8B2YIm7V+17AW4B/gXoTLqQInHgaTNbaWZNSRdToI8C7cBd0ZLYnWZ2RNJFFcGXgfuSLiJXCvQezGwk8AvganfflXQ9+XL3g+4+BZgATDWz/5N0Tfkws88D2919ZdK1FNHZ7n4GcD7wDTM7N+mCCjAYOAO4zd1PB/YA1yRbUmGiZaOLgIeSriVXCvRuovXmXwDN7v5I0vUUQ/TX32eBv0y4lHydDVwUrTvfD0wzs58nW1Jh3H1r9LgdWARMTbaigrwOvN7tb4APEwK+mp0PrHL3tqQLyZUCPRJ9kLgAWOfuNyddTyHMrM7MRkdfHw58Dngl2ary4+7XuvsEd68n/DX4GXe/LOGy8mZmR0QfuhMtTZwHrEm2qvy5+x+BLWZ2YjQ1Hai6Cwl6uJQqXG6BKrmnaJmcDfxf4KVo7RngOnd/IsGa8jUOWBh9Un8Y8KC7V/3lfikxFlgU+gcGA/e6+1PJllSwfwCao6WK14CvJlxP3sxsBDAD+HrSteRDly2KiKSEllxERFJCgS4ikhIKdBGRlFCgi4ikhAJdRCQlFOgiIimhQBcRSQkFuohISvwvXoX2unAFLdIAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
+ "text/plain": "",
+ "image/svg+xml": "\r\n\r\n\r\n\r\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAajUlEQVR4nO3df5BV5X3H8fcX5IegBCkrxSBsMJSoLSjdgUYTqyVkNFp/TEYrQxLaxGxqmhZr0oolk5hkyFDbGjNOxFBIhsSNGIkUYtSGrmL8EcWF4K9ARZBFZWVXqoBABJZv/3jOZvfsD/bu3nPvuefez2tm5+5z9sf93kg+fHnueZ7H3B0REcmeAWkXICIi/aMAFxHJKAW4iEhGKcBFRDJKAS4iklEnFPPJRo8e7dXV1cV8ShGRzNuwYcNb7l7V+XpRA7y6upqGhoZiPqWISOaZWWN31zWFIiKSUQpwEZGMUoCLiGSUAlxEJKMU4CIiGaUAFxEpoLo6qK6GAQPCY11dcr+7qLcRiohUkro6qK2FgwfDuLExjAHmzMn/96sDFxEpkAUL2sO7zcGD4XoSFOAiIgXgHjru7uzcmcxzKMBFRBK2YUOY8+7J+PHJPI8CXEQkIceOwfnnQ01NGI8YAcOGxb9n2DBYuDCZ51OAi4gkoL4eBg6Ep54K44cegr17YckSmDABzMLjkiXJvIEJugtFRCQvR47ApEnt893nngvPPhvCHEJYJxXYnakDFxHpp/vug8GD28P717+GjRvbw7vQ1IGLiPTRgQNwyimh+wa49FL4+c/DNEkxqQMXEemDxYvhpJPaw/ull+CBB4of3qAOXEQkJ3v2wOjR7ePPfz68IZkmdeAiIr34xjfi4d3YmH54gzpwEZEevfZafNHN174WwrxUKMBFRLrxxS+G+e42LS3xLrwUaApFRKSDzZvDG5Jt4X3HHWFfk1ILb1AHLiIChJC+6ipYvTqMzWDfvnDHSalSBy4iFW/9+rD5VFt4r1gR9jUp5fAGdeAiUsFaW2HGjLB7IMDpp8Mrr4TVlVnQawduZpPNbFOHj31mdoOZjTKztWa2NXo8pRgFi4gk4b//G044oT28f/nLsE93VsIbcghwd/9fdz/H3c8B/hQ4CKwC5gP17j4JqI/GIiIl7fBhOO00uPjiMJ4xI3Tis2alW1d/9HUOfCawzd0bgSuA5dH15cCVSRYmIpK0FStgyBBoagrjZ56Bp58+/uELpayvZV8L3BN9PsbdmwCix1O7+wEzqzWzBjNraGlp6X+lIiL99O674a6S2bPD+KqrwpuU06cX4ckLeCx9zgFuZoOBy4H7+vIE7r7E3Wvcvaaqqqqv9YmI5OWOO+Dkk9vHmzfD/fcXafOptmPpGxvbD8msrU0sxPvSgV8CbHT33dF4t5mNBYgemxOpSEQkAS0tIaT/4R/C+ItfDBn6oQ8VsYgCH0vflwCfTfv0CcAaYG70+VxgdSIViYjk6atfhVM7TOq+9hp873spFNLT8fMJHUufU4Cb2TBgFnB/h8uLgFlmtjX62qJEKhIR6afGxtB1tx0a/M1vhq573LiUCurp+PmEjqXPaSGPux8E/qDTtT2Eu1JERFJ33XWwbFn7eM8eGDUqvXqA8DdJbW18GiXBY+kzevOMiEjw0kuh624L77vuCl136uEN4TTjAh5Lr6X0IpJJ7uEsyoceCuMhQ0LXPXx4unV1UcBj6dWBi0jmPPVUuK26LbxXroTf/a4Ew7vA1IGLSGa0tsK0afD882E8cSJs2QKDBqVbV1rUgYtIJjz4YNh8qi286+th27bKDW9QBy4iJe6998JtgG+9FcYf+Qg89lh29y9Jkv4nEJGS9eMfw9Ch7eHd0ACPP67wbqMOXERKzr598L73tY//6q/gnnuKtH9JhujvMREpKbfdFg/vl18O28AqvLtSBy4iJWH3bvjDP2wfz5sHt9+eXj1ZoA5cRFJ3003x8N61S+GdCwW4iKTm1VfD1Mitt4bxt78dVliOHZtuXVmhKRQRScVnPhPuMmnz9tswcmR69WSROnARKarnnw9dd1t4L10aum6Fd9+pAxeRonAPJ7/X14fxySeHNy5PPDHdurJMHbiIFFzb4pu28F61KtzrrfDOjzpwESmYo0dhypRwkDDA5Mnw4othTxPJnzpwESmINWvCRlNt4b1uXdg5UOGdHAW4iOSmrg6qq8NcSHV1GHfj0KHwhuQVV4TxRRfBsWPw539etEorhgJcRHpXVxfOdmxsDO9GNjaGcacQ/+EPw5GPe/eG8aZN8MgjWgZfKApwEendggXxg3khjBcsAOCdd0JIf/az4Utz5oScnzq1yHVWGAW4iPRu584er996K5xySvulbdvg7ruLU1alU4CLSO/Gj6eO2VTzKgNopZpX+R7XY36Mm24K3/KVr4Sue+LEdEutJHo/WER6VfeJu6ldfC4HCacGN1LNl7jz919vaopvRiXFkVMHbmYjzWylmW0xs81m9mEzG2Vma81sa/R4Su+/SUSyaMGDH/l9eHc0cmTouhXe6ch1CuW7wMPu/iFgKrAZmA/Uu/skoD4ai0gZ6mkKvO1uE0lHrwFuZiOAC4BlAO5+2N3fAa4Alkffthy4slBFikh6fvCD0GV3Z/z44tYicbnMgU8EWoAfmtlUYAMwDxjj7k0A7t5kZqd298NmVgvUAozXf22RzGhtPf6qyWHDYOHC4tUjXeUyhXICMA1Y7O7nAgfow3SJuy9x9xp3r6mqqupnmSJSTLfcEg/vL3wh3Bo4YUK433vCBFiyJNzvLenJpQN/HXjd3Z+JxisJAb7bzMZG3fdYoLlQRYpIcRw6FDrrjn73OxgyJHyuwC4tvXbg7v4m8JqZTY4uzQR+C6wB5kbX5gKrC1KhiBTFZz4TD+9Fi8Lcd1t4S+nJ9T7wvwfqzGwwsB34G0L4/9TMPgfsBK4uTIkiUkh79sDo0fFrra1hzyopbTkFuLtvAmq6+dLMZMsRkWKaMQPWr28f33MPXHttevVI32glpkgF2r4dzjgjfq2nWwWldOkfSSIVZvjweHivW6fwzip14CIV4tlnYfr0+DUFd7YpwEUqQOcDFV58Ec4+O51aJDmaQhEpYw88EA/vD3wgdN0K7/KgDlykDLl3vQ3wjTfgtNPSqUcKQx24SJm56654eH/iEyHQFd7lRx24SJnobvOpvXthxIh06pHCUwcuUgZuvjke3vPmha5b4V3e1IGLZNiBA3DSSfFrhw/DoEHp1CPFpQ5cJKOuuSYe3t/5Tui6Fd6VQx24SMY0N8OYMfFrx451vddbyp86cJEMmTIlHt4rV4auW+FdmdSBi2TAyy/D5Mnxa1oGL+rARUrcgAHx8H7iCYW3BOrARUrUr38N550Xv6bglo4U4CIlqPOc9pYtXadQRDSFIlJCVq2Kh/eZZ4auW+Et3VEHLlICutt86s03u94uKNKROnCRlN1xRzy8r7oqBLrCW3qjDlwkJUeOwODB8Wv793ddGi/SE3XgIin48pfj4f1P/xS6boW39IU6cJEi2r+/6w6BR4503QZWJBfqwEWK5PLL4+F9552h61Z4S3/pj45IgTU1dT0NR5tPSRJy6sDNbIeZvWBmm8ysIbo2yszWmtnW6PGUwpYqkj2TJsXDe/VqbT4lyenLFMpF7n6Ou9dE4/lAvbtPAuqjsYgAmzeHkH7llfZr7mEaRSQp+cyBXwEsjz5fDlyZfzki2WcGZ53VPn76ae1hIoWRa4A78Esz22BmtdG1Me7eBBA9ntrdD5pZrZk1mFlDS0tL/hWLlKjHH49PjQwZEoJ7xoz0apLyluubmOe7+y4zOxVYa2Zbcn0Cd18CLAGoqalRHyJlqfOc9iuvwBlnpFOLVI6cOnB33xU9NgOrgOnAbjMbCxA9NheqSJFSde+98fCeNi103QpvKYZeO3AzGw4McPf90ecfB74JrAHmAouix9WFLFSklHS3+VRLC4wenU49Uply6cDHAE+Y2XPAeuAX7v4wIbhnmdlWYFY0Fil7//7v8fCePTsEusJbiq3XDtzdtwNTu7m+B5hZiKJEStHhw+GNyY4OHIBhw9KpR0RL6UVy8KUvxcP7q18NXbfCW9KkpfQix7F3L4wcGb929CgMHJhOPSIdqQMX6cGsWfHwXro0dN0KbykV6sBFOnn9dTj99Pg1bT4lpUgduEgH48bFw/vBB7X5lJQudeAiwAsvwJQp8Wvav0RKnTpwqXhm8fDesEHhLdmgAJeK9cgj8amRkSNDcE+bll5NIn2hKRSpSJ3ntF99FaqrUylFpN/UgUtF+fGP4+F93nmh61Z4SxapA5eKcOxY1/u39+yBUaPSqUckCerApex9+9vx8P7rvw5dt8Jbsk4duJSt996DoUPj1w4d6npNJKvUgUtZuu66eFB/61uh61Z4SzlRBy5l5e23u06NtLZ2PXxBpBzoj7WUjY9+NB7ey5d3f3KOSLlQBy6Z19jY9TZAraSUSqDeRDJt9Oh4eK9dq/CWyqEOXDLpN7/puuRdwS2VRgEumdN5Gfxzz3XdSVCkEmgKRTLj4Yfj4T12bOi6Fd5SqdSBS8nr7k6SnTu7npojUmnUgUtJ+8EP4uE9c2YIdIW3iDpwKVGtrXBCpz+d77wD73tfOvWIlCJ14FJybrklHt5/+7eh61Z4i8Tl3IGb2UCgAXjD3S8zs1HAvUA1sAO4xt3fLkSRUhkOHYJhw+LX3nsPBg9Opx6RUteXDnwesLnDeD5Q7+6TgPpoLJKzurqwCGfAABg+PB7et94aum6Ft0jPcurAzWwccCmwELgxunwFcGH0+XJgHXBTsuVJuaqrg9paOHgwjNseIRy+0PlebxHpKtcO/Hbgn4FjHa6NcfcmgOjx1O5+0MxqzazBzBpaWlryKlbKx4IF8dBuM2GCwlskV70GuJldBjS7+4b+PIG7L3H3Gnevqaqq6s+vkDKzfXvYgKo7O3cWtxaRLMtlCuV84HIz+wQwFBhhZncDu81srLs3mdlYoLmQhUp5GD68+867zfjxxatFJOt67cDd/WZ3H+fu1cC1wCPu/ilgDTA3+ra5wOqCVSmZt359mBrpGN6d7zgZNgwWLixuXSJZls994IuAWWa2FZgVjUW6MIMZM9rHL70U7jBZsqR9znvChDCeMye9OkWyxryIe3DW1NR4Q0ND0Z5P0vXzn8Pll7ePJ06EbdvSq0ckq8xsg7vXdL6upfSSuO42n3rjDTjttHTqESlXWkovibrrrnh4X3ppCHSFt0jy1IFLIo4ehUGD4tf27YOTT06nHpFKoA5c8jZ/fjy8580LXbfCW6Sw1IFLvx04ACedFL92+HDXTlxECkMduPTL1VfHw/v220PXrfAWKR514NInzc0wZkz8mjafEkmHOnDJ2ZQp8fBeuTJ03QpvkXQowKVXL78cQvqFF9qvucMnP5nnL+64IXh1dRiLSM40hSLH1bm7fvJJOO+8BH5x5w3BGxvDGLSeXiRH6sClW0891TW83RMKb+h+Q/CDB8N1EcmJOnDponNwb9kCkycn/CQ9bfytDcFFcqYOvMJ1nIauqoqH91lnha478fCGnjf+1obgIjlTgFewtmnoxsYQ1G+91f61N98M274WzMKF2hBcJE8K8Ap2vHMpO9/rnbg5c7QhuEietB94hTpyBAYP7v5rZmFxjoiUhp72A1cHXoH+8R97Dm/QNLRIVugulAqyfz+MGBG/NmxY13MqNQ0tkg3qwCvEX/5lPLzvvFPnUopknTrwMtfU1PU0nI6bT82Zo8AWySp14GXsgx+Mh/eaNdp8SqScqAMvQ7/9LZx9dvxaEW82EpEiUQdeZszi4f3MMwpvkXKlAC8Tjz0WnxoZOjQE9/Tp6dUkIoXV6xSKmQ0FfgUMib5/pbt/3cxGAfcC1cAO4Bp3f7twpUpPOs9pv/IKnHFGOrWISPHk0oG/B/yFu08FzgEuNrM/A+YD9e4+CaiPxtKbBA8xWLEiHt41NaHrVniLVIZeO3APa+3fjYaDog8HrgAujK4vB9YBNyVeYTlJ6BAD95D/HbW0wOjRCdUpIpmQ0xy4mQ00s01AM7DW3Z8Bxrh7E0D0eGrhyiwTCRxi8G//Fg/vOXNCoCu8RSpPTrcRunsrcI6ZjQRWmdkf5/oEZlYL1AKMr/RNNvI4xODwYRgyJH7t4EE48cQE6hKRTOrTXSju/g5hquRiYLeZjQWIHpt7+Jkl7l7j7jVVVVV5lptx/TzE4Prr4+H9ta+FrlvhLVLZcrkLpQo44u7vmNmJwMeAfwXWAHOBRdHj6kIWWhYWLozPgcNxd4/auxdGjoxfO3oUBg4sYI0ikhm5dOBjgUfN7HngWcIc+AOE4J5lZluBWdFYjqcPhxh87GPx8F66NHTdCm8RaaMDHUrM66/D6afHr3XcfEpEKo8OdMiA006Lh/dDD2nzKRHpmTazKgHPPw9Tp8avaf8SEemNOvAi67wQ0ywe3hs3Fjm8E1wZKiLFpQ68iLpbiNlm1CjYs6cECurHylARSYc68CLqbiEmwPvfn0J4QyIrQ0UkPQrwIuppweWuXcWt4/fyWBkqIulTgBeBO1x0Uc9z26ntMNDPlaEiUhoU4AX22GPh/cF168K4834mx1mIWXgLF4YCOkq1IBHpCwV4gRw9CpMnw4UXhvGZZ8KRI7BsWU4LMYujDytDRaT0aCVmAfzXf8FVV7WPf/Ur+OhH06tHRLKtp5WYuo0wQYcOQVUVHDgQxjNnwtq1WkkpIoWhKZSELFsWpo/bwvu55+B//kfhLSKFU5kBnuDqw7ffDiF93XVh/OlPh7tNpkxJpFIRkR5VXoC3rT5sbAxJ27b6sB8hvmhRWEHZZts2+NGPEqxVROQ4Ki/AE1h9uGtX6LpvvjmMb7op/F0wcWKCdYqI9KLy3sTMc/XhDTfAd7/bPn7zTRgzJoG6RET6qPI68H6uPty6NXTdbeH9H/8Rum6Ft4ikpfICvI+rD93hmmvgj/6o/drevXDjjQWsUUQkB5UX4H1YfbhxY7hR5b77wvhHPwqBPmJEkWsWEelG5c2BQwjr4ywXP3YMLrgAnnwyjKuqwhT50KFFqk9EJAeV14H34tFHw8nvbeH9wAPQ3KzwFpHSU5kdeDeOHAmbT736ahhPnQobNoQwFxEpRerAgZUrYfDg9vB+8knYtEnhLSKlrSIDvONKejO4+upw/ZJLwvz3eeelWp6ISE4qLsA7r6Rvs2gRPPigNp8SkezoNcDN7HQze9TMNpvZS2Y2L7o+yszWmtnW6PGUglSY4MZTEJa/d3ew8OLFef1aEZGiy6UDPwp82d3PBP4M+DszOwuYD9S7+ySgPhonK8GNpyAcb/baa91/Tef4ikjW9Brg7t7k7hujz/cDm4H3A1cAy6NvWw5cmXh1CWw8BbBvH1x/fTje7IQe7rvROb4ikjV9mgM3s2rgXOAZYIy7N0EIeeDUHn6m1swazKyhpaWlb9XlufEUwC9+AWefHRZb3ngjfP/7OsdXRMpDzgFuZicBPwNucPd9uf6cuy9x9xp3r6mqqupbdf3ceArgrbfgU5+Cyy4LS9+feipsQPXZz+ocXxEpDzkFuJkNIoR3nbvfH13ebWZjo6+PBZoTr66PG09BmCpfsSKcAn/vvfD1r4c9TWbMaP+eOXNgx45wy+COHQpvEcmmXO5CMWAZsNndb+vwpTXA3OjzucDqxKvrw8ZTAG+8AVdeCbNnwwc+EIL7lltgyJDEKxMRSZ15x5uhu/sGs48AjwMvAMeiy/9CmAf/KTAe2Alc7e7/d7zfVVNT4w0NDfnW3IU7LF0KX/lKWBL/rW+Fgxe0klJEyoGZbXD3ms7Xe90Lxd2fAHpa3jIz38LytW0bfP7zYROqCy+E//xP+OAH065KRKTwMrsSs7UVbrsN/uRPwqZT3/8+1NcrvEWkcmRyN8IXX4TPfQ7Wrw93mSxeDOPGpV2ViEhxlXwH3nEl/YQJ8MlPwrRpsH07/OQnsGaNwltEKlNJd+BtK+nbFmPu3Bk+PvxhWL06nJQjIlKpSroD724lPcCuXQpvEZGSDvAEVtKLiJStkg7wPFbSi4iUvZIO8H6spBcRqRglHeB9XEkvIlJRSvouFAhhrcAWEemqpDtwERHpmQJcRCSjFOAiIhmlABcRySgFuIhIRvV6oEOiT2bWAjQW7Qn7ZzTwVtpFJKicXk85vRYor9dTTq8FSu/1THD3LhuIFDXAs8DMGro7+SKryun1lNNrgfJ6PeX0WiA7r0dTKCIiGaUAFxHJKAV4V0vSLiBh5fR6yum1QHm9nnJ6LZCR16M5cBGRjFIHLiKSUQpwEZGMUoBHzOx0M3vUzDab2UtmNi/tmvrLzIaa2Xozey56Ld9Iu6Z8mdlAM/uNmT2Qdi35MrMdZvaCmW0ys4a068mXmY00s5VmtiX6/8+H066pv8xscvTfpe1jn5ndkHZdPdEceMTMxgJj3X2jmZ0MbACudPffplxan5mZAcPd/V0zGwQ8Acxz96dTLq3fzOxGoAYY4e6XpV1PPsxsB1Dj7qW0UKTfzGw58Li7LzWzwcAwd38n7bryZWYDgTeAGe5ekgsQ1YFH3L3J3TdGn+8HNgPvT7eq/vHg3Wg4KPrI7N/UZjYOuBRYmnYtEmdmI4ALgGUA7n64HMI7MhPYVqrhDQrwbplZNXAu8Ey6lfRfNOWwCWgG1rp7Zl8LcDvwz8CxtAtJiAO/NLMNZlabdjF5mgi0AD+MpriWmtnwtItKyLXAPWkXcTwK8E7M7CTgZ8AN7r4v7Xr6y91b3f0cYBww3cz+OO2a+sPMLgOa3X1D2rUk6Hx3nwZcAvydmV2QdkF5OAGYBix293OBA8D8dEvKXzQVdDlwX9q1HI8CvINovvhnQJ273592PUmI/jm7Drg45VL663zg8mjeeAXwF2Z2d7ol5cfdd0WPzcAqYHq6FeXldeD1Dv/CW0kI9Ky7BNjo7rvTLuR4FOCR6I2/ZcBmd78t7XryYWZVZjYy+vxE4GPAlnSr6h93v9ndx7l7NeGftI+4+6dSLqvfzGx49CY50VTDx4EX062q/9z9TeA1M5scXZoJZO6N/27MpsSnTyADhxoX0fnAp4EXorljgH9x9wdTrKm/xgLLo3fRBwA/dffM335XJsYAq0K/wAnAT9z94XRLytvfA3XRtMN24G9SricvZjYMmAV8Ie1aeqPbCEVEMkpTKCIiGaUAFxHJKAW4iEhGKcBFRDJKAS4iklEKcBGRjFKAi4hk1P8DE9nwnKBxd3cAAAAASUVORK5CYII=\n"
},
- "metadata": {},
- "output_type": "display_data"
+ "metadata": {
+ "needs_background": "light"
+ }
}
],
"source": [
@@ -253,6 +266,23 @@
"plt.show()"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "[[3.2]\n [3.8]\n [1.1]\n [1.9]\n [1.5]\n [5.9]\n [7.8]] [[27]\n [35]\n [17]\n [24]\n [20]\n [62]\n [86]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(X_test,Y_test)"
+ ]
+ },
{
"cell_type": "code",
"execution_count": null,
@@ -277,9 +307,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.5"
+ "version": "3.8.3-final"
}
},
"nbformat": 4,
"nbformat_minor": 2
-}
+}
\ No newline at end of file