From b534b422e9d82395bacdbdb46f9e55a8e13c0af5 Mon Sep 17 00:00:00 2001 From: wengJJ <31797645+wengJJ@users.noreply.github.com> Date: Tue, 7 Aug 2018 12:37:09 +0800 Subject: [PATCH] Update Day 11 K-NN.md --- Code/Day 11 K-NN.md | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/Code/Day 11 K-NN.md b/Code/Day 11 K-NN.md index 2afaa1a..61375e4 100644 --- a/Code/Day 11 K-NN.md +++ b/Code/Day 11 K-NN.md @@ -1,54 +1,54 @@ -# K-Nearest Neighbors (K-NN) +# K近邻法 (K-NN)

- +

-## The DataSet | Social Network +## 数据集 | 社交网络

-## Importing the libraries +## 导入相关库 ```python import numpy as np import matplotlib.pyplot as plt import pandas as pd ``` -## Importing the dataset +## 导入数据集 ```python dataset = pd.read_csv('Social_Network_Ads.csv') X = dataset.iloc[:, [2, 3]].values y = dataset.iloc[:, 4].values ``` -## Splitting the dataset into the Training set and Test set +## 将数据划分成训练集和测试集 ```python from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) ``` -## Feature Scaling +## 特征缩放 ```python from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) ``` -## Fitting K-NN to the Training set +## 使用K-NN对训练集数据进行训练 ```python from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2) classifier.fit(X_train, y_train) ``` -## Predicting the Test set results +## 对测试集进行预测 ```python y_pred = classifier.predict(X_test) ``` -## Making the Confusion Matrix +## 生成混淆矩阵 ```python from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred)