Create Day 13_SVM.md
This commit is contained in:
93
Code/Day 13_SVM.md
Normal file
93
Code/Day 13_SVM.md
Normal file
@ -0,0 +1,93 @@
|
||||
# Day 13 | 支持向量机 (SVM)
|
||||
|
||||
## 导入库
|
||||
```python
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
```
|
||||
|
||||
## 导入数据
|
||||
```python
|
||||
dataset = pd.read_csv('Social_Network_Ads.csv')
|
||||
X = dataset.iloc[:, [2, 3]].values
|
||||
y = dataset.iloc[:, 4].values
|
||||
```
|
||||
|
||||
## 拆分数据集为训练集合和测试集合
|
||||
```python
|
||||
from sklearn.cross_validation import train_test_split
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
|
||||
```
|
||||
|
||||
## 特征量化
|
||||
```python
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
sc = StandardScaler()
|
||||
X_train = sc.fit_transform(X_train)
|
||||
X_test = sc.transform(X_test)
|
||||
```
|
||||
|
||||
## 适配SVM到训练集合
|
||||
```python
|
||||
from sklearn.svm import SVC
|
||||
classifier = SVC(kernel = 'linear', random_state = 0)
|
||||
classifier.fit(X_train, y_train)
|
||||
```
|
||||
## 预测测试集合结果
|
||||
```python
|
||||
y_pred = classifier.predict(X_test)
|
||||
```
|
||||
|
||||
## 创建混淆矩阵
|
||||
```python
|
||||
from sklearn.metrics import confusion_matrix
|
||||
cm = confusion_matrix(y_test, y_pred)
|
||||
```
|
||||
|
||||
## 训练集合结果可视化
|
||||
|
||||
```python
|
||||
from matplotlib.colors import ListedColormap
|
||||
X_set, y_set = X_train, y_train
|
||||
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
|
||||
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
|
||||
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
|
||||
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
|
||||
plt.xlim(X1.min(), X1.max())
|
||||
plt.ylim(X2.min(), X2.max())
|
||||
for i, j in enumerate(np.unique(y_set)):
|
||||
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
|
||||
c = ListedColormap(('red', 'green'))(i), label = j)
|
||||
plt.title('SVM (Training set)')
|
||||
plt.xlabel('Age')
|
||||
plt.ylabel('Estimated Salary')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
```
|
||||
<p align="center">
|
||||
<img src="">
|
||||
</p>
|
||||
|
||||
## 测试集合结果可视化
|
||||
```python
|
||||
from matplotlib.colors import ListedColormap
|
||||
X_set, y_set = X_test, y_test
|
||||
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
|
||||
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
|
||||
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
|
||||
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
|
||||
plt.xlim(X1.min(), X1.max())
|
||||
plt.ylim(X2.min(), X2.max())
|
||||
for i, j in enumerate(np.unique(y_set)):
|
||||
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
|
||||
c = ListedColormap(('red', 'green'))(i), label = j)
|
||||
plt.title('SVM (Test set)')
|
||||
plt.xlabel('Age')
|
||||
plt.ylabel('Estimated Salary')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
```
|
||||
<p align="center">
|
||||
<img src="">
|
||||
</p>
|
||||
Reference in New Issue
Block a user