diff --git a/Code/DAY 2.ipynb b/Code/DAY 2_Simple_Linear_Regression.ipynb similarity index 94% rename from Code/DAY 2.ipynb rename to Code/DAY 2_Simple_Linear_Regression.ipynb index 2a87940..657b00e 100644 --- a/Code/DAY 2.ipynb +++ b/Code/DAY 2_Simple_Linear_Regression.ipynb @@ -4,8 +4,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#机器学习100天——第二天:简单线性回归\n", - "##第一步:数据预处理" + "# 机器学习100天——第二天:简单线性回归\n", + "## 第一步:数据预处理" ] }, { @@ -19,7 +19,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "metadata": { "collapsed": true }, @@ -39,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -76,7 +76,7 @@ } ], "source": [ - "dataset = pd.read_csv('datasets/studentscores.csv')\n", + "dataset = pd.read_csv('../datasets/studentscores.csv')\n", "print(dataset)" ] }, @@ -89,7 +89,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "metadata": { "collapsed": true }, @@ -108,14 +108,14 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "D:\\anaconda\\lib\\site-packages\\sklearn\\cross_validation.py:44: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.\n", + "/home/ymao/usr/miniconda/lib/python3.6/site-packages/sklearn/cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.\n", " \"This module will be removed in 0.20.\", DeprecationWarning)\n" ] } @@ -129,7 +129,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "##第二步:训练集使用简单线性回归模型来训练" + "## 第二步:训练集使用简单线性回归模型来训练" ] }, { @@ -141,7 +141,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "metadata": { "collapsed": true }, @@ -159,7 +159,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "metadata": { "collapsed": true }, @@ -173,7 +173,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "##第三步:预测结果" + "## 第三步:预测结果" ] }, { @@ -185,7 +185,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "metadata": { "collapsed": true }, @@ -198,14 +198,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "##可视化" + "## 可视化" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "###训练集结果可视化" + "### 训练集结果可视化" ] }, { @@ -217,16 +217,16 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 11, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -244,16 +244,16 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 12, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -271,14 +271,14 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGg5JREFUeJzt3X+wlGXdx/H3lx+mYCIID6IIx8rRpyFDPVqZmYo6/si0\ndCw9Now2Umn+yGfG0UidVMpnMM2xSTuBSnrSUbA0Iw0ttGyEDqAhIo+/QNGDHhRUOIrA+T5/XLvu\n2bMLZ/fsvXvfe+/nNcPsuW727H6j4+d897qv+7rN3RERkfo3IO4CREQkGgp0EZGUUKCLiKSEAl1E\nJCUU6CIiKaFAFxFJCQW6iEhKKNBFRFJCgS4ikhKDavlmI0eO9Kamplq+pYhI3Vu0aNFadx/V1/Nq\nGuhNTU20t7fX8i1FROqema0q5XmachERSQkFuohISijQRURSQoEuIpISCnQRkZRQoIuIlKOtDZqa\nYMCA8NjWFndFH6vpskURkbrW1gZTpkBXVxivWhXGAC0t8dWVoQ5dRKRUU6fmwjyrqyscTwAFuohI\nqV59tbzjNaZAFxEp1bhx5R2vMQW6iEippk2DIUPyjw0ZEo4ngAJdRKRULS3Q2grjx4NZeGxt3e4J\n0Ysvhttvr0155u61eSegubnZtTmXiDSCRYuguTk3riRqzWyRuzf39Tx16CIiEdq6NQR5Nsx33bVw\nYUy1KNBFRCLy4IMwaFDozgHmzoV162CnnWrz/rqwSESkQhs3wsiR8OGHYXzYYfD44+Fi0lpShy4i\nUoGbboKdd86F+TPPwD/+UfswB3XoIiL90tEBe+yRG3/ve3DrrfHVAwp0EZGy7bYbvPNObvz66/nh\nHhdNuYiIlKitLSw/z4b5DTeE5YhJCHNQhy4i0qetW8PqlZ7WrIHRo+OpZ1vUoYuIbMcll+SH+dln\nh648aWEOCnQRkaLWrQvTKzfemDu2aRPcdlsZL1Ljm2Eo0EVEejnoIBgxIje+9dbQle+wQxkvkr0Z\nxqpV4ZuzN8OoYqhrLxcRkYxly2DChPxj/Y7IpqYQ4r2NHw8rV5b1UtrLRUSkDGb5Yf7EE5VtqBXH\nzTAU6CLS0P74xxDmWbvsEoL8K1+p8IVjuBmGAl1EkqOGJxG7u0OQf+MbuWOvvQbvvhvRG8RwMwwF\nuogkQw1PIh5+OAwcmBufemp4y7FjI3yTftwMo1I6KSoi8Wlrg6lTw7zygAHhCp7e+nEScVvWroVR\no/KPdXXVbnvb/tJJURFJtt4debEwh8hOIprlh3m2K096mJdDl/6LSDymTi3tVj4VnkRcuBC+8IX8\nY9n587RRhy4i8Sil867wJKJZfphnLxBKY5iDAl1E4rKtznvgwIpPIv7614Wh7R72LE8zBbqIxGNb\ny/pmzQpzIitXlh3m2e77/PNzx9rbK7xAqI4o0EUkHhEv6zv55MLbvrmHfVkahU6Kikh8WloqXpf9\n3nswbFj+sbffzt9cq1GoQxeRumWWH+ZHHRW68kYMc1CHLiJ1aOlS2H///GNbtxZOuTSaBv+fLyL1\nxiw/zKdPD115XpjX+MYSSaEOXUTqwu9+B5Mn5x8runolewVq9qKl7J4wUNV9VJKgpA7dzH5kZsvM\n7Fkzu9vMdjSzEWY2z8xeyDwOr3axItJ4sksRe4b5dvcqL3YFaldXOJ5yfQa6me0JXAg0u/sEYCDw\nbeAy4DF33wd4LDMWEYnM2WcXX4q43b3KY7ixRFKUOoc+CNjJzAYBQ4A3gJOBWZm/nwWcEn15ItKI\nurpCV37HHblja9aUeIFQDDeWSIo+A93dXweuB14FOoB33f2vwGh378g8bQ0wutj3m9kUM2s3s/bO\nzs6IyhaRtDKDoUNz489/PgT56KIJU0QMN5ZIilKmXIYTuvG9gT2AoWZ2Vs/neNhUvejvTndvdfdm\nd28e1XsjYhGRjGXLCvdf2bwZnn66zBeK4cYSSVHKKpejgVfcvRPAzO4HDgXeNLMx7t5hZmOAt6pY\np4ikWO8gnzIFfvObCl4wgitQ61Epc+ivAl80syFmZsAkYDnwIJA97zwZeKA6JYpIWv3858V3Rawo\nzBtYnx26uy8ws9nAYmALsARoBXYG7jWz7wKrgNOrWaiIpEvvIL/vPjjttHhqSYuSLixy96uAq3od\n3kTo1kVESrbffrBiRf6xRtnettp06b+I1MQHH4SuvGeY/+c/CvMoKdBFpOp7n5gVriR0h899LtK3\naXgKdJFGl937ZNWqkLLZvU8iCPViSxE3blRXXi0KdJFGV6W9T8xgwoTc+FOfCkHeu1OPRUp3Y1Sg\nizS6iPc+ueWW4ksRX3qpXy8XvSp+IombAl2k0UW494kZnHdebnz11QmcXknxbowKdJFGF8HeJ0ce\nWbwrv+KKCOqLWop3Y1SgizS6CvY+2bw5fMv8+blj//pXArvynlK8G6PuWCQi/dr7pHdHDgkP8qxp\n0/LvaASp2Y1RHbqIlOXllwvDfP36OglzSPVujOrQRaRkvYN8yJCwrrzupHQ3RnXoItKnu+8uDPPu\n7joN8xRToIvIdpnBmWfmxhddlLtxsySLplxEpKjTTw9b2vZUN/PkDUqBLiJ5urth4MD8Y488Asce\nG089UjoFuoh8rG6XIgqgOXQRATo6CsP8zTcV5vVGHbpIg1NXnh7q0EUa1Ny5hWG+davCvJ4p0EUa\nkBmceGJu3NISgnyAEqGu6f8+kQbygx8U3xXxrrviqUeipTl0kQZQrPu+7z447bR46pHqUKCLpNzA\ngWFteU+aJ08nTbmIJEmE97pcty5Mr/QM85UrFeZppg5dJCmy97rM7tOdvdclNM5e5VIRdegiSRHB\nvS6feKIwzDdvVpg3CgW6SFJUeK9LM/jqV3PjY48NQT5In8MbhgJdJCn6ea/LK64ovhTxkUciqkvq\nhgJdJCmmTQu3AOqpj3tdmsG11+bGv/2tplcamT6MiSRF9sTn1KlhmmXcuBDmRU6Ijh0Lr7+ef0xB\nLgp0kSTp416XGzbAJz+Zf2z5cthvvyrXJXVBgS5SJ7QUUfqiOXSRhFu8uDDMP/xQYS6F1KGLJFjv\nIJ84EZYsiacWST516CIJdOONxZciKsxlexToIgljBpdckhtPn67pFSmNplxEEuKgg8J8eU8KcimH\nOnSRmG3aFLrynmHe3q4wl/KpQxeJkZYiSpRK6tDNbFczm21mz5vZcjP7kpmNMLN5ZvZC5nF4tYsV\nSYQI9ixfsaIwzN97T2EulSl1yuUm4GF33w/4PLAcuAx4zN33AR7LjEXSLbtn+apVIX2ze5aXEepm\n+Vd27r57eKneV4CKlKvPQDezYcDhwEwAd//I3dcDJwOzMk+bBZxSrSJFEqOCPctvv734UsSOjgjr\nk4ZWSoe+N9AJ3G5mS8xshpkNBUa7e/ZHcQ0wutg3m9kUM2s3s/bOzs5oqhaJSz/3LDeDc87JjS+/\nXNMrEr1SAn0QcCBwi7sfAGyk1/SKuztQ9MfT3Vvdvdndm0eNGlVpvSLxKnPP8uOPL96V/+xnEdcl\nQmmBvhpY7e4LMuPZhIB/08zGAGQe36pOiSIJUuKe5Vu2hCB/+OHcsccfV1cu1dVnoLv7GuA1M9s3\nc2gS8BzwIDA5c2wy8EBVKhRJkpYWaG2F8eNDYo8fH8Y9trw1g8GD87/NHQ4/vMa1SsMxL6FlMLOJ\nwAxgB+Bl4GzCL4N7gXHAKuB0d39ne6/T3Nzs7e3tldYskkivvVY48/L22zBiRDz1SHqY2SJ3b+7r\neSVdWOTuTwPFXmxSuYWJpJEuEJIk0KX/IhWYM6cwzLu7FeYSDwW6SD+ZwWmn5cZTpoQgL9ati9SC\n9nIRKdNhh8GTT+YfU0cuSaAOXaRE3d2h++4Z5n/6k8JckkMdukgJdNJT6oE6dJHteOONwjBfuVJh\nLsmkQJf0iGBb257MYM8984+5h2uJRJJIgS7pEMG2tlnFliJu2aKuXJJPgS7pUMG2tj31Xoo4YUII\n8oEDI6hRpMoU6JIO/dzWNuvUU4vvirh0aYV1idSQAl3SocxtbbOyFwLdf3/u2E03aXpF6pOWLUo6\nTJsW5sx7TrsU2da2Jy1FlLRRhy7pUMK2tlnvvFMY5suWKcyl/qlDl/RoaSka4D2pK5c0U4cuDeHR\nRwvDfNMmhbmkizp0Sb3eQT5iRLjxhEjaqEOX1DrvvOJLERXmklYKdEklM7jlltz4yis1vSLppykX\nSRWd9JRGpg5dUmHjxsIwf+ophbk0FnXoUvfUlYsE6tClbi1cWBjmGzYozKVxqUOXuqSuXKSQOnSp\nK1ddVXwpYtlhHvHNMESSQB261I3eQf797+cvTSxZ9mYY2Y28sjfDgD63DhBJMvMafk5tbm729vb2\nmr2fpMPIkYUXA1X0Y9vUFEK8t/Hjww1DRRLGzBa5e3Nfz9OUiyTWRx+FrrxnmM+bF8FceYU3wxBJ\nKk25SCJV9aTnuHHFO/Q+boYhknTq0CVRVqwoDPN16yJewTJtWrj5RU993AxDpB6oQ5fEqNlSxOyJ\nz6lTwzTLuHEhzHVCVOqcOnSJ3YwZhWHe3V3ldeUtLeEEaHd3eFSYSwqoQ5dY9Q7yc86BmTPjqUWk\n3inQJRZHHgnz5+cf05WeIpXRlIvU1NatoSvvGeYPPaQwF4mCOnSpGe2/IlJd6tAbSUz7l7z2WmGY\nd3QozEWipg69UcS0f4m6cpHaUYfeKKZOzYV5VldXOF4Fs2dHtBRRuyKKlEwdeqOo4f4lvYP8pJPg\nwQf78ULaFVGkLCV36GY20MyWmNlDmfEIM5tnZi9kHodXr0yp2Lb2KYlw/5Jvfav4XuX9CnOo+acK\nkXpXzpTLRcDyHuPLgMfcfR/gscxYkqqK+5e4hyC/997csbvu0q6IIrVWUqCb2VjgRGBGj8MnA7My\nX88CTom2NIlUSwu0toY9v83CY2trxVMXZmF6uyf3iGZEavCpQiRNSu3QfwlcCnT3ODba3TsyX68B\nRkdZmFRBhPuXrF1bOL3y8svaFVEkTn0Gupl9DXjL3Rdt6zkebntU9D9lM5tiZu1m1t7Z2dn/SiUx\nzGDUqPxj7rD33hG/UZU+VYikVZ+3oDOznwPfAbYAOwK7APcDBwNHuHuHmY0B5rv7vtt7Ld2Crr7N\nmwfHHpt/bPNmGKS1UiJVFdkt6Nz9cncf6+5NwLeBv7n7WcCDwOTM0yYDD1RQryScWX6YH3xw6MoV\n5iLJUcmFRdcBx5jZC8DRmbGkzAUXFF+KuHBhPPWIyLaV1V+5+3xgfubrt4FJ0ZckSdE7yG++GX74\nw3hqEZG+6QOzFND+KyL1SXu5yMfef78wzJ99VmEuUi/UoQugrlwkDdShN7innioM8w8+UJiL1CN1\n6A2sd5DvtZe2SRGpZ+rQG9BPf1p8KaLCXKS+qUNvML2D/Oqr4Yor4qlFRKKlQG8Qxx0HjzySf0zz\n5CLpokBPuU2bYMcd848tXQoTJsRTj4hUjwI9xbQUUaSx6KRoCr30UmGYb9yoMBdJOwV6ypjBZz6T\nG2d3Rex9nwgRSR8Fekrcc492RRRpdAr0FDCDM87Ija+/XtMrIo1IJ0Xr2FlnQVtb/jEFuUjjUqDX\noa1bC+8UtGABHHJIPPWISDJoyiVp2tqgqQkGDAiPvVpws8Iwd48gzPt4XxFJPnXoSdLWBlOmQFdX\nGK9aFcbA60e0MHZs/tPXr4dhw6r7vrS0RPAGIlIL5jWcdG1ubvb29vaavV/daWoKYdqL4QVPe+WV\n6r8v48fDypURvpGI9IeZLXL35r6epymXJOm13eFcji8I8+7uiMO8yPv2eVxEEkmBniTjxn38peGc\nyNyPxz/+cZgrL3Y5f5TvW9JxEUkkBXqSTJvGXz5xSkFX7ne1MW1add+34FLSIUOo7puKSNQU6Anh\nDnZWCyds+sPHx/42+gz8rrbqn5hsaYHW1jBnbhYeW1t1QlSkzuikaAJcdx1cfnlufNxx8Je/xFeP\niCRLqSdFtWwxRl1dMHRo/rENGwqPiYiUQlMuMZk8OT+4r7kmTLsozEWkv9Sh19j69TB8eP6x7u4q\nrV4RkYaiDr2GrrkmP8yfeaaKSxFFpOEo0Gtg5coQ2ldeGcaXXhqCfP/9izxZe6qISD9pyqWK3OHM\nM8PNJ7I6O2HkyG18g/ZUEZEKqEOvkoULQ5OdDfMZM0LAbzPMAaZOzYV5VldXOC4i0gd16BHbsgUO\nPBCWLg3j3XcPe6/suGMJ36w9VUSkAurQIzRnDgwenAvzefOgo6PEMAftqSIiFVGgR+D998P0ymmn\nhfGkSWEp4tFHl/lC2lNFRCqgQK/Q9Omwyy65e3k++yw8+mg/lyJqTxURqYDm0Ptp9WrYa6/c+MIL\n4aabInjhlhYFuIj0iwK9H777Xbjtttx4zRoYPTq+ekREQFMuZVmyJMyEZMP8V78KUy1lh7kuHhKR\nKlCHXoLubjj0UFiwIIx32SWsXul9/rIkunhIRKqkzw7dzPYys7+b2XNmtszMLsocH2Fm88zshczj\n8L5eqx499BAMHJgL8z//Gd59t59hDrp4SESqppQply3A/7j7Z4EvAueb2WeBy4DH3H0f4LHMODU2\nbgxb2Z50Uhgfeihs3QonnFDhC+viIRGpkj4D3d073H1x5uv3geXAnsDJwKzM02YBp1SryFq7+WbY\needcI71kCTz5ZJjyrpguHhKRKikrosysCTgAWACMdveOzF+tAep+nceaNeGk54UXhvG554aTnhMn\nRvgmunhIRKqk5EA3s52BOcDF7v5ez7/zcGPSojcnNbMpZtZuZu2dnZ0VFVtNF1wAY8bkxqtXh2t6\nIqeLh0SkSkq6SbSZDQYeAh5x9xsyx1YAR7h7h5mNAea7+77be50k3iR62TKYMCE3/sUv4JJL4qtH\nRKS3yG4SbWYGzASWZ8M840FgMnBd5vGBftYai+7usOfK/PlhPGgQrFsX5s5FROpRKVMuXwa+Axxl\nZk9n/pxACPJjzOwF4OjMuC7MmxeWImbD/P77YfNmhbmI1Lc+O3R3/yewra2mJkVbzja0tYV12q++\nGlaDTJvWrznnDz8M+6+sXRvGEyfCv/8dunMRkXqX/Ev/s1dWrloVlpxkr6ws83L5GTNgp51yYb5w\nYViOqDAXkbRIfqBXeGXl2rVhMcm554bxWWeF3wsHHxxxnSIiMUt+oFdwZeWll8KoUbnxypVw553R\nlCUikjTJD/R+XFm5YkXoyqdPD+Nrrw1d+fjxVahPRCQhkh/oZVxZ6Q4nngj77Zc7tn699r0SkcaQ\n/EAv8crKxx8Pe63MnRvG99wTAn7YsBhqFhGJQX2s8djObdk++gj22Sc3pb7vvrB0KQweXMP6REQS\nIPkd+nbceSd84hO5MH/ySXj+eYW5iDSm+ujQe1m3DkaMyI2/+U2YPTvMyIiINKq669Cvuio/zF98\nEebMUZiLiNRNh/7yy/DpT+fGP/kJXHNNfPWIiCRNXQT6iy+GE59Zb7+d36WLiEidTLkMz9x++o47\nwlJEhbmISKG66NB32y0EuYiIbFtddOgiItI3BbqISEoo0EVEUkKBLiKSEgp0EZGUUKCLiKSEAl1E\nJCUU6CIiKWFewyt2zKwTWFXGt4wE1lapnP5KYk2QzLqSWBMks64k1gTJrCuJNUF16xrv7qP6elJN\nA71cZtbu7s1x19FTEmuCZNaVxJogmXUlsSZIZl1JrAmSUZemXEREUkKBLiKSEkkP9Na4CygiiTVB\nMutKYk2QzLqSWBMks64k1gQJqCvRc+giIlK6pHfoIiJSokQGupndZmZvmdmzcdeSZWZ7mdnfzew5\nM1tmZhcloKYdzWyhmT2TqemncdeUZWYDzWyJmT0Udy1ZZrbSzJaa2dNm1h53PVlmtquZzTaz581s\nuZl9KeZ69s38G2X/vGdmF8dZU5aZ/Sjzs/6smd1tZjsmoKaLMvUsi/vfKZFTLmZ2OLAB+J27T4i7\nHgAzGwOMcffFZvZJYBFwirs/F2NNBgx19w1mNhj4J3CRuz8VV01ZZnYJ0Azs4u5fi7seCIEONLt7\notYwm9ks4B/uPsPMdgCGuPv6uOuC8IsZeB34gruXcw1JNWrZk/Az/ll3/8DM7gXmuvsdMdY0AbgH\nOAT4CHgY+L67vxhHPYns0N39CeCduOvoyd073H1x5uv3geXAnjHX5O6+ITMcnPkT+29oMxsLnAjM\niLuWpDOzYcDhwEwAd/8oKWGeMQl4Ke4w72EQsJOZDQKGAG/EXM9/AwvcvcvdtwCPA9+Mq5hEBnrS\nmVkTcACwIN5KPp7aeBp4C5jn7rHXBPwSuBTojruQXhx41MwWmdmUuIvJ2BvoBG7PTFHNMLOhcRfV\nw7eBu+MuAsDdXweuB14FOoB33f2v8VbFs8BXzGw3MxsCnADsFVcxCvQymdnOwBzgYnd/L+563H2r\nu08ExgKHZD4CxsbMvga85e6L4qxjGw7L/FsdD5yfmdqL2yDgQOAWdz8A2AhcFm9JQWb65+vAfXHX\nAmBmw4GTCb8E9wCGmtlZcdbk7suB/wX+SphueRrYGlc9CvQyZOap5wBt7n5/3PX0lPmY/nfguJhL\n+TLw9cx89T3AUWZ2V7wlBZkOD3d/C/gDYd4zbquB1T0+Wc0mBHwSHA8sdvc34y4k42jgFXfvdPfN\nwP3AoTHXhLvPdPeD3P1wYB3wf3HVokAvUeYE5ExgubvfEHc9AGY2ysx2zXy9E3AM8HycNbn75e4+\n1t2bCB/X/+busXZRAGY2NHMym8yUxrGEj8uxcvc1wGtmtm/m0CQgthPtvZxBQqZbMl4FvmhmQzL/\nPU4inMuKlZn9V+ZxHGH+/Pdx1TIorjfeHjO7GzgCGGlmq4Gr3H1mvFXxZeA7wNLMnDXAj919bow1\njQFmZVYiDADudffELBNMmNHAH0IOMAj4vbs/HG9JH7sAaMtMcbwMnB1zPdlfescA34u7lix3X2Bm\ns4HFwBZgCQm4OhOYY2a7AZuB8+M8qZ3IZYsiIlI+TbmIiKSEAl1EJCUU6CIiKaFAFxFJCQW6iEhK\nKNBFRFJCgS4ikhIKdBGRlPh/Rc+jTuQbrmQAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -293,19 +293,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "###测试集结果可视化" + "### 测试集结果可视化" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGwFJREFUeJzt3XtwXOV9//H3F9nGNy42GCEwttJgIMQtJigQCklJgIZL\nAp50QpOY1E1pDE3SEGBKTTyl4VcgJJ0AYRpoVeJWCSLEgTA2hjE15p7UdmQwJr4QYYKMXdkSGBBG\nwTd9f388R0hHkq2V9nL2nP28Zjy7z6Nd7Xex+eirZ895jrk7IiKSfgckXYCIiBSGAl1EJCMU6CIi\nGaFAFxHJCAW6iEhGKNBFRDJCgS4ikhEKdBGRjFCgi4hkxIhSvtjhhx/utbW1pXxJEZHUW7Vq1evu\nPmmwx5U00Gtra2lqairlS4qIpJ6ZteTyOC25iIhkhAJdRCQjFOgiIhmhQBcRyQgFuohIRijQRUQy\nQoEuIpIRCnQRkSL6znfg+98vzWuV9MQiEZFK8bvfwfHH94yvvbb4r6kOXUSkgNzhL/8yHuYdHaV5\nbQW6iEiBPP88HHAALFgQxj/5SQj4gw4qzetryUVEJE/ucNZZ8PTTYXzYYbB5M4weXdo61KGLiOTh\nqadCV94d5g89BK+/XvowB3XoIiLDsmcPTJ8OL70UxieeCC+8ACMSTFV16CIiQ7RoEYwc2RPmTz8N\na9cmG+agDl1EJGfvvQc1NfDWW2H8qU/BY4+BWbJ1dVOHLiKSg4YGGDOmJ8yffx6WLSufMAd16CIi\n+9XRAYcc0jP+4hfh3nuTq2d/1KGLiOzDbbfFw7y5uXzDHNShi4j009YG1dU9429+E374w+TqyZU6\ndBGRXubNi4f5li3pCHNQoIuIANDSEj7gvPnmML7xxnAG6FFHJVvXUGjJRUQq3le/Cnff3TN+4w2Y\nODG5eoZr0A7dzI43s9W9/nSY2bfMbKKZLTWz5uh2QikKFhEplHXrQlfeHeZ33RW68jSGOeQQ6O7+\nkrvPcPcZwClAJ/AgMBdY5u7TgGXRWESk7LnDRRfBhz8cxiNGwI4dcMUVydaVr6GuoZ8NbHT3FuBi\noCGabwBmFrIwEZFiWLkybKb10ENh/POfw+7dMG5csnUVwlDX0L8A/Cy6X+3urdH9rUD1wE8REUle\nVxecfnoIdIDJk2HjRhg1Ktm6CinnDt3MRgEXAb/o+zV3d8D38bw5ZtZkZk3t7e3DLlREZLiWLoWq\nqp4wX7IEXnutBGHe2Ai1teFXgtraMC6ioXTo5wPPufu2aLzNzGrcvdXMaoC2gZ7k7vVAPUBdXd2A\noS8iUgy7d8Oxx8KmTWFcVwfLl4dwL7rGRpgzBzo7w7ilJYwBZs0qyksOZQ39i/QstwAsAmZH92cD\nCwtVlIhIvu6/P3Tg3WH+v/8Lv/lNicIcwhlK3WHerbMzzBdJTh26mY0DzgUu7zV9C7DAzC4DWoBL\nCl+eiMjQdHbChAmwa1cYX3ABLF6cwK6I3T9Jcp0vgJw6dHd/190Pc/e3e8294e5nu/s0dz/H3bcX\nrUoRkRzU14ejVbrD/MUX4eGHE9ridsqUoc0XgE79F5HUe/PNENqXR2sIX/lKONZ8+vQEi7rpJhg7\nNj43dmyYLxIFuoik2ne/Gz+z8/e/h/nzk6vnfbNmhV8Zpk4NP22mTg3jIn0gCtrLRURSqrU1vnHW\ntdfC976XXD0DmjWrqAHelwJdRFLn6qvDxSe6bd0a3/K2UmnJRURSY+PGsHrRHeb/+q9hrVxhHqhD\nF5FU+PKX4Z57esZvvRW/PJyoQxeRMrdmTejKu8N8/vzQlSvM+1OHLiJlyR0+/emwDwvAQQfBtm0w\nZkyydZUzdegiUnZ+9auwn1V3mD/4IHR0KMwHow5dRMrG3r3wkY+EZRYIG2utWwcjRyZbV1qoQxeR\nsvDII+HKQd1h/vjj0NysMB8KdegikqidO8P2Jm3RBtxnnglPPRWWXGRo9J9MRBJz770wenRPmDc1\nwTPPKMyHSx26iJTcjh3hqJVun/tc2L88kV0RM0Q/B0WkpP7t3+JhvmEDPPCAwrwQ1KGLSEm8/jpM\nmtQz/ru/gzvvTK6eLFKHLiJF953vxMN80yaFeTGoQxeRotm8GY45pmd8/fVwww3J1ZN1CnQRKYpv\nfAN+9KOecXs7HH54cvVUAi25iEhuGhuhtjYcU1hbG8YDeOml8AFnd5jfcUfYl0VhXnzq0EVkcI2N\nMGcOdHaGcUtLGMP7V+Rxh0suCYcfduvoiB/RIsWlDl1EBjdvXk+Yd+vsDPPAqlWhce8O83vuCQGv\nMC8tdegiMrhNmwac7mp5jT/7ODz7bBgfcUR46IEHlrA2eZ86dBEZ3JQp/aae5M+oYu/7Yb54cdiv\nXGGeHAW6iAzupptg7FgA9lDFNH7HJ3kSgD/+Y9izBy68MMH6BMgx0M3sUDO738w2mNl6MzvdzCaa\n2VIza45uJxS7WBFJyKxZUF/PXRPnMZI9vMw0IGyktWYNVFUlXJ8AuXfoPwSWuPsJwEnAemAusMzd\npwHLorGIZNCbb4JdOouvbb8RgHPOga6usNWtlI9BA93MDgE+AfwYwN13uftbwMVAQ/SwBmBmsYoU\nkeScdRZMnNgzvu++cGk4baZVfnI5yuUDQDvwX2Z2ErAKuBKodvfW6DFbgeqBnmxmc4A5AFMG+GBF\nRMrTa6/1/yzUPZlaJDe5LLmMAD4C3OXuJwPv0md5xd0dGPCv2t3r3b3O3esm9d6dR0TK1tFHx8P8\n0UcV5mmQS4e+Gdjs7iui8f2EQN9mZjXu3mpmNUBbsYoUkdL47W/DUSu9KcjTY9AO3d23Aq+Z2fHR\n1NnAOmARMDuamw0sLEqFIlISZvEwb2pSmKdNrmeK/j3QaGajgFeArxB+GCwws8uAFuCS4pQoIsX0\n1FPhg89u48fDO+8kVo7kIadAd/fVQN0AXzq7sOWISCn1PVJl40b4oz9KphbJn84UFalAv/hFPMxP\nOSUsryjM002bc4lUEPewK2JvbW3xy8NJeqlDF6kQd9wRD/PPfz4EvMI8O9Shi2Tcnj0wcmR8bscO\nGDcumXqkeNShi2TYtdfGw/wf/iF05QrzbFKHLpJB774bDj/sbfduGKH/4zNNHbpIxlxySTzMuy/S\nrDDPPv0Vi2REe3u4BFxvXV3aFbGSqEMXyYBTTomH+YIFoStXmFcWdegiKfbKK/DBD8bntP9K5VKH\nLpJS48fHw/zJJxXmlU4dukjKrFoFdX12VlKQCyjQRVKl75r4iy/C9OnJ1CLlR0suIinw6KPxMD/6\n6NCVK8ylN3XoImWub1e+aRMcc0wytUh5U4cuUqZ++tN4mJ91VujKFeayL+rQRcpMVxdUVcXntm+H\nCROSqUfSQx26SBm55ZZ4mP/N34SuXGEuuVCHLlIGdu2CAw+Mz/3hDzB6dDL1SDqpQxdJ2Ne/Hg/z\nG24IXbnCXIZKHbpIQjo64JBD4nN79vRfPxfJlTp0kQRccEE8zP/zP0NXrjCXfKhDFymh1lY46qj4\nnLa4lUJRhy5SIscdFw/zxYu1xa0Uljp0kSLbsAE+9KH4nDbTkmLIqUM3s1fN7EUzW21mTdHcRDNb\nambN0a2OlBXpwywe5suXK8yleIay5PJJd5/h7t0bd84Flrn7NGBZNBYR4Ne/ji+lVFWFID/ttORq\nkuzLZw39YqAhut8AzMy/HJH0M4MzzugZv/RSOBxRpNhyDXQHHjOzVWY2J5qrdvfW6P5WoHqgJ5rZ\nHDNrMrOm9vb2PMsVKV8LF8a78g99KHTlxx2XXE1SWXL9UPRMd99iZkcAS81sQ+8vurub2YArg+5e\nD9QD1NXVafVQMscdDujTGrW2wpFHJlOPVK6cOnR33xLdtgEPAqcC28ysBiC6bStWkSLlqr4+Huaf\n/WwIeIW5JGHQDt3MxgEHuPs70f0/B/4fsAiYDdwS3S4sZqEi5WTvXhjR5/+ejg446KBk6hGB3Dr0\nauBZM3sBWAk87O5LCEF+rpk1A+dEY5HMu/76eJh/85uhK1eYS9IG7dDd/RXgpAHm3wDOLkZRIuXo\nD3+AsWPjczt3wqhRydQj0pdO/RfJwezZ8TD//vdDV64wl3KiU/9F9mP7djjssPjc3r39j2oRKQf6\nZymyDx//eDzMGxsHPkRRpFyoQxfpY9MmmDo1Pqf9VyQN1GuI9HLkkfEwf+wxhbmkhzp0EWDNGjip\nz7FcCnJJG3XoUvHM4mH+/PMKc0knBbpUrCefjG+mNXFiCPIZMxIrSSQvWnKRitT3sm+//z3U1iZS\nikjBqEOXivLzn8fD/GMfC125wlyyQB26VISBjh9//fX+Jw2JpJk6dMm822+Ph/mXvhQCXmEuWaMO\nXTJr9+7+e628+27/DbZEskIdumTSNdfEw/y660JXrjCXLFOHLpmyY0f/fcl37+5/MQqRLFKHLpnx\nF38RD/Mf/Sh05QpzqRT6py6p19YG1dXxua6u/seai2SdOnRJtRkz4mH+wAOhK1eYSyVShy6p9PLL\nMG1afE77r0ilU4cuqTNmTDzMn3lGYS4C6tAlRZqa4KMfjc8pyEV6KNAlFfquia9dCyeemEwtIuVK\nSy5S1pYsiYd5bW3oyhXmIv2pQ5ey1bcr37wZjj46mVpE0iDnDt3MqszseTNbHI0nmtlSM2uObicU\nr0ypJP/93/EwP+ec0JUrzEX2bygd+pXAeuDgaDwXWObut5jZ3Gj8jwWuTypIVxdUVcXn3nwTDj00\nmXpE0ianDt3MJgMXAnf3mr4YaIjuNwAzC1uaVJKbb46H+Zw5oStXmIvkLtcO/XbgWqD3tkfV7t4a\n3d8KVPd7lsggdu6E0aPjc++9BwcemEw9Imk2aIduZp8B2tx91b4e4+4ODHhEsJnNMbMmM2tqb28f\nfqWSOVdcEQ/zG28MXbnCXGR4cunQzwAuMrMLgNHAwWZ2D7DNzGrcvdXMaoC2gZ7s7vVAPUBdXZ1O\nAxHefrv/Usrevf0vESciQzPo/0Lufp27T3b3WuALwOPufimwCJgdPWw2sLBoVUpmfPrT8TCfP3/g\n632KyNDlcxz6LcACM7sMaAEuKUxJkkVbtsDkyfE5bXErUlhD6ovc/Ul3/0x0/w13P9vdp7n7Oe6+\nvTglStp98IPxMH/kEW1xK1IMOlNUimb9+v6n6GszLZHi0cqlFIVZPMxXrlSYixSbAl0K6le/ii+l\nHHhgCPK+296KSOFpyUUKpu+aeHMzHHtsMrWIVCJ16JK3Bx+Mh/mf/EnoyhXmIqWlDl2GbaDjx7dt\ngyOOSKYekUqnDl2G5c4742H+uc+FgFeYiyRHHboMyd69MKLPv5p33oHx45OpR0R6qEOXnM2bFw/z\nq64KXbnCXKQ8KNBlUJ2d4UPPm2/umdu1C269Nc9v3NgYLhJ6wAHhtrExz28oUtkU6LJfl14K48b1\njG+9NXTlI0fm+Y0bG8NVLFpawjdsaQljhbrIsJmX8PS9uro6b2pqKtnryfC98QYcfnh8rqCbadXW\nhhDva+pUePXVAr2ISDaY2Sp3rxvscerQpZ/TT4+H+X33FWEzrU2bhjYvIoPSUS7yvldfhQ98ID5X\ntF/gpkwZuEOfMqVILyiSferQBYDDDouH+eOPF3kzrZtugrFj43Njx4Z5ERkWBXqFW706LKVs77Wb\nvTt88pNFfuFZs6C+PqyZm4Xb+vowLyLDoiWXCtZ3TfyFF8I+LCUza5YCXKSA1KFXoGXL4mFeXR26\n8pKGuYgUnDr0CtO3K29p0eeQIlmhDr1C/Oxn8TA/88zQlSvMRbJDHXrGDbTF7RtvwMSJydQjIsWj\nDj3DfvCDeJj/1V+FgFeYi2STOvQM2r0bRo2Kz3V2wpgxydQjIqWhDj1jrroqHub/9E+hK1eYi2Sf\nOvSMeOcdOPjg+NyePVBVlUw9IlJ6g3boZjbazFaa2QtmttbMbojmJ5rZUjNrjm4nFL9cGcjMmfEw\n//d/D125wlyksuSy5LIT+JS7nwTMAM4zs48Bc4Fl7j4NWBaNZTAFvKjDtm3hUMSFC3vmurrg8svz\nrlJEUmjQQPdgRzQcGf1x4GKgIZpvAGYWpcIsKeBFHaZPhyOP7BkvXFiELW5FJFVy+lDUzKrMbDXQ\nBix19xVAtbu3Rg/ZClQXqcbsmDcvHG7SW2dnmM9Rc3MI7bVre+bc4aKLClSjiKRWToHu7nvdfQYw\nGTjVzKb3+boTuvZ+zGyOmTWZWVN7e3veBadanhd1GDUKjjuuZ/zrXxd5i1sRSZUhHbbo7m8BTwDn\nAdvMrAYgum3bx3Pq3b3O3esmTZqUb73ptq/z7Ac5/37lytCV797dM+ceriwkItItl6NcJpnZodH9\nMcC5wAZgETA7ethsYOHA30HeN4yLOpjBaaf1jNevV1cuIgPLpUOvAZ4wszXAbwhr6IuBW4BzzawZ\nOCcay/4M4aIODz8c/4Bz2rQQ5CecUMJ6RSRVzEvY7tXV1XlTU1PJXi+NBtpM6//+D2pqkqlHRJJn\nZqvcvW6wx+nU/zIyf348zM8/PwS8wlxEcqFT/8tAV1f/szrffrv/qfwiIvujDj1h//Iv8TD/2tdC\nV16yMC/gmasikix16Al5773+OyDu3Nl/29ui6j5ztftkp+4zV0EXbxZJIXXoCZg7Nx7mt9wSuvKS\nhjkU5MxVESkf6tBL6L33wgecb73VM7d3b/+jWkomzzNXRaS8qEMvkYaG0JV3h/mKFQMfolhSwzxz\nVUTKkwK9yDo6wglCf/3XYfylL4UgP/XURMsKhnHmqoiULwV6Ed12GxxySM/45ZfL7CCSIZy5KiLl\nT2voRdDWBtW9NhO+6iq49dbk6tmvWbMU4CIZoQ69wObNi4f5li1lHOYikikK9AJpaQmrFjffHMY3\n3RTWyo86Ktm6RKRyVGagF/jsyK9+NXybbtu3w7e/nde3FBEZssoL9AJe13PdutCV3313GP/Hf4Rv\nOWFCgWsWEclB5QV6Ac6O7L6G54c/HMajRsGOHT1nzYuIJKHyAj3PsyNXrgwrNQ89FMYLFoQ9WMaN\nK1B9IiLDVHmHLU6ZEpZZBprfj66ucA3PlSt7Ht7cnMD+KyIi+1B5Hfowzo5cujRscdsd5v/zP+Fn\ngsJcRMpJ5XXo3SfRzJsXllmmTAlhPsDJNbt3w7HH9qzGfPSjsHx5wvuviIjsQ+UFOuR0duT998Pn\nP98zXr4cTjutyHWJiOShMgN9Pzo7w2GHu3aF8Wc/CwsXhsMTRUTKmRYPeqmvD0erdIf52rWwaJHC\nXETSQR068OabMHFiz/iyy3pOFhIRSYuK79C/+914mL/6qsJcRNKpYjv01tb4xlnXXdezsZaISBoN\n2qGb2TFm9oSZrTOztWZ2ZTQ/0cyWmllzdFu8HUwKvJnWo4/Gw3zbNoW5iKRfLksue4Br3P1E4GPA\n183sRGAusMzdpwHLonHhFXAzre3bw6XgzjsPxo+HH/wgfMsjjih82SIipTZooLt7q7s/F91/B1gP\nHA1cDDRED2sAZhalwgJspgXwy1/CiSfCPfeEp7a3w9VXF7BOEZGEDWkN3cxqgZOBFUC1u7dGX9oK\nVO/jOXOAOQBThnM1+Tw309q6Fb7xDXjgATj5ZFiyBGbMGHoZIiLlLuejXMxsPPAA8C137+j9NXd3\nwAd6nrvXu3udu9dNmjRp6BXu64fAID8c3OEnPwld+eLF4WiWFSsU5iKSXTkFupmNJIR5o7v/Mpre\nZmY10ddrgLaiVDiMzbQ2bYILLoDZs0Ogr14Nc+fCyJFFqVBEpCzkcpSLAT8G1rt778sdLwJmR/dn\nAwsLXx5hz5X6epg6NZyyOXVqGA+wF0tXF9x5Z7jwxDPPwB13wNNPwwknFKUyEZGyYmG1ZD8PMDsT\neAZ4EeiKpr9NWEdfAEwBWoBL3H37/r5XXV2dNzU15VvzgJqb4W//NgT4ueeGzO99nU8RkbQys1Xu\nXjfY4wb9UNTdnwX2tZvJ2UMtrND27IHbboPrr4fRo2H+/HBoovZfEZFKk+ozRdesCfuuNDXBzJlh\nuaWmJumqRESSkcq9XHbuhH/+ZzjllPAB6IIF4ThzhbmIVLLUdegrVoSufO1auPRSuP12OOywpKsS\nEUleajr0zk645hr40z+Ft9+Ghx+Gn/5UYS4i0i0VHfpLL8GFF8LGjXDFFfC978HBByddlYhIeUlF\noE+ZAscdF/YpP+uspKsRESlPqQj0MWPgkUeSrkJEpLylZg1dRET2T4EuIpIRCnQRkYxQoIuIZIQC\nXUQkIxToIiIZoUAXEckIBbqISEYMeoGLgr6YWTvhYhjl7HDg9aSLKKAsvZ8svRfI1vvReymuqe4+\n6EWZSxroaWBmTblcGSQtsvR+svReIFvvR++lPGjJRUQkIxToIiIZoUDvrz7pAgosS+8nS+8FsvV+\n9F7KgNbQRUQyQh26iEhGKNAjZnaMmT1hZuvMbK2ZXZl0TcNlZqPNbKWZvRC9lxuSrilfZlZlZs+b\n2eKka8mXmb1qZi+a2Woza0q6nnyZ2aFmdr+ZbTCz9WZ2etI1DYeZHR/9nXT/6TCzbyVd11BoySVi\nZjVAjbs/Z2YHAauAme6+LuHShszMDBjn7jvMbCTwLHCluy9PuLRhM7OrgTrgYHf/TNL15MPMXgXq\n3L3cjnUeFjNrAJ5x97vNbBQw1t3fSrqufJhZFbAFOM3dy/3cmfepQ4+4e6u7PxfdfwdYDxydbFXD\n48GOaDgy+pPan9xmNhm4ELg76VokzswOAT4B/BjA3XelPcwjZwMb0xTmoEAfkJnVAicDK5KtZPii\nJYrVQBuw1N1T+16A24Frga6kCykQBx4zs1VmNifpYvL0AaAd+K9oSexuMxuXdFEF8AXgZ0kXMVQK\n9D7MbDzwAPAtd+9Iup7hcve97j4DmAycambTk65pOMzsM0Cbu69KupYCOjP6uzkf+LqZfSLpgvIw\nAvgIcJe7nwy8C8xNtqT8RMtGFwG/SLqWoVKg9xKtNz8ANLr7L5OupxCiX3+fAM5LupZhOgO4KFp3\nvg/4lJndk2xJ+XH3LdFtG/AgcGqyFeVlM7C512+A9xMCPs3OB55z921JFzJUCvRI9EHij4H17n5r\n0vXkw8wmmdmh0f0xwLnAhmSrGh53v87dJ7t7LeHX4Mfd/dKEyxo2MxsXfehOtDTx58Bvk61q+Nx9\nK/CamR0fTZ0NpO5Agj6+SAqXWyD8uiTBGcCXgRejtWeAb7v7IwnWNFw1QEP0Sf0BwAJ3T/3hfhlR\nDTwY+gdGAPe6+5JkS8rb3wON0VLFK8BXEq5n2KIfsucClyddy3DosEURkYzQkouISEYo0EVEMkKB\nLiKSEQp0EZGMUKCLiGSEAl1EJCMU6CIiGaFAFxHJiP8PldXB71FyIikAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -318,6 +318,15 @@ "plt.show()" ] }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "完整的项目请前往Github项目100-Days-Of-ML-Code查看。有任何的建议或者意见欢迎在issue中提出~" + ] + }, { "cell_type": "code", "execution_count": null, @@ -344,7 +353,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.2" } }, "nbformat": 4, diff --git a/Code/Data.csv b/Code/Data.csv deleted file mode 100644 index 564b65b..0000000 --- a/Code/Data.csv +++ /dev/null @@ -1,11 +0,0 @@ -Country,Age,Salary,Purchased -France,44,72000,No -Spain,27,48000,Yes -Germany,30,54000,No -Spain,38,61000,No -Germany,40,,Yes -France,35,58000,Yes -Spain,,52000,No -France,48,79000,Yes -Germany,50,83000,No -France,37,67000,Yes \ No newline at end of file diff --git a/Code/Day 13_SVM.ipynb b/Code/Day 13_SVM.ipynb index 8508e27..0477659 100644 --- a/Code/Day 13_SVM.ipynb +++ b/Code/Day 13_SVM.ipynb @@ -42,7 +42,7 @@ }, "outputs": [], "source": [ - "dataset = pd.read_csv('Social_Network_Ads.csv')\n", + "dataset = pd.read_csv('../datasets/Social_Network_Ads.csv')\n", "X = dataset.iloc[:, [2, 3]].values\n", "y = dataset.iloc[:, 4].values" ] diff --git a/Code/Day 1_Data Preprocessing.ipynb b/Code/Day 1_Data Preprocessing.ipynb index b4d80b8..921b622 100644 --- a/Code/Day 1_Data Preprocessing.ipynb +++ b/Code/Day 1_Data Preprocessing.ipynb @@ -62,7 +62,7 @@ } ], "source": [ - "dataset = pd.read_csv('Data.csv')\n", + "dataset = pd.read_csv('../datasets/Data.csv')\n", "X = dataset.iloc[ : , :-1].values\n", "Y = dataset.iloc[ : , 3].values\n", "print(\"Step 2: Importing dataset\")\n", @@ -304,6 +304,15 @@ "source": [ "完整的项目请前往Github项目100-Days-Of-ML-Code查看。有任何的建议或者意见欢迎在issue中提出~" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/Code/Social_Network_Ads.csv b/Code/Social_Network_Ads.csv deleted file mode 100644 index e139dea..0000000 --- a/Code/Social_Network_Ads.csv +++ /dev/null @@ -1,401 +0,0 @@ -User ID,Gender,Age,EstimatedSalary,Purchased -15624510,Male,19,19000,0 -15810944,Male,35,20000,0 -15668575,Female,26,43000,0 -15603246,Female,27,57000,0 -15804002,Male,19,76000,0 -15728773,Male,27,58000,0 -15598044,Female,27,84000,0 -15694829,Female,32,150000,1 -15600575,Male,25,33000,0 -15727311,Female,35,65000,0 -15570769,Female,26,80000,0 -15606274,Female,26,52000,0 -15746139,Male,20,86000,0 -15704987,Male,32,18000,0 -15628972,Male,18,82000,0 -15697686,Male,29,80000,0 -15733883,Male,47,25000,1 -15617482,Male,45,26000,1 -15704583,Male,46,28000,1 -15621083,Female,48,29000,1 -15649487,Male,45,22000,1 -15736760,Female,47,49000,1 -15714658,Male,48,41000,1 -15599081,Female,45,22000,1 -15705113,Male,46,23000,1 -15631159,Male,47,20000,1 -15792818,Male,49,28000,1 -15633531,Female,47,30000,1 -15744529,Male,29,43000,0 -15669656,Male,31,18000,0 -15581198,Male,31,74000,0 -15729054,Female,27,137000,1 -15573452,Female,21,16000,0 -15776733,Female,28,44000,0 -15724858,Male,27,90000,0 -15713144,Male,35,27000,0 -15690188,Female,33,28000,0 -15689425,Male,30,49000,0 -15671766,Female,26,72000,0 -15782806,Female,27,31000,0 -15764419,Female,27,17000,0 -15591915,Female,33,51000,0 -15772798,Male,35,108000,0 -15792008,Male,30,15000,0 -15715541,Female,28,84000,0 -15639277,Male,23,20000,0 -15798850,Male,25,79000,0 -15776348,Female,27,54000,0 -15727696,Male,30,135000,1 -15793813,Female,31,89000,0 -15694395,Female,24,32000,0 -15764195,Female,18,44000,0 -15744919,Female,29,83000,0 -15671655,Female,35,23000,0 -15654901,Female,27,58000,0 -15649136,Female,24,55000,0 -15775562,Female,23,48000,0 -15807481,Male,28,79000,0 -15642885,Male,22,18000,0 -15789109,Female,32,117000,0 -15814004,Male,27,20000,0 -15673619,Male,25,87000,0 -15595135,Female,23,66000,0 -15583681,Male,32,120000,1 -15605000,Female,59,83000,0 -15718071,Male,24,58000,0 -15679760,Male,24,19000,0 -15654574,Female,23,82000,0 -15577178,Female,22,63000,0 -15595324,Female,31,68000,0 -15756932,Male,25,80000,0 -15726358,Female,24,27000,0 -15595228,Female,20,23000,0 -15782530,Female,33,113000,0 -15592877,Male,32,18000,0 -15651983,Male,34,112000,1 -15746737,Male,18,52000,0 -15774179,Female,22,27000,0 -15667265,Female,28,87000,0 -15655123,Female,26,17000,0 -15595917,Male,30,80000,0 -15668385,Male,39,42000,0 -15709476,Male,20,49000,0 -15711218,Male,35,88000,0 -15798659,Female,30,62000,0 -15663939,Female,31,118000,1 -15694946,Male,24,55000,0 -15631912,Female,28,85000,0 -15768816,Male,26,81000,0 -15682268,Male,35,50000,0 -15684801,Male,22,81000,0 -15636428,Female,30,116000,0 -15809823,Male,26,15000,0 -15699284,Female,29,28000,0 -15786993,Female,29,83000,0 -15709441,Female,35,44000,0 -15710257,Female,35,25000,0 -15582492,Male,28,123000,1 -15575694,Male,35,73000,0 -15756820,Female,28,37000,0 -15766289,Male,27,88000,0 -15593014,Male,28,59000,0 -15584545,Female,32,86000,0 -15675949,Female,33,149000,1 -15672091,Female,19,21000,0 -15801658,Male,21,72000,0 -15706185,Female,26,35000,0 -15789863,Male,27,89000,0 -15720943,Male,26,86000,0 -15697997,Female,38,80000,0 -15665416,Female,39,71000,0 -15660200,Female,37,71000,0 -15619653,Male,38,61000,0 -15773447,Male,37,55000,0 -15739160,Male,42,80000,0 -15689237,Male,40,57000,0 -15679297,Male,35,75000,0 -15591433,Male,36,52000,0 -15642725,Male,40,59000,0 -15701962,Male,41,59000,0 -15811613,Female,36,75000,0 -15741049,Male,37,72000,0 -15724423,Female,40,75000,0 -15574305,Male,35,53000,0 -15678168,Female,41,51000,0 -15697020,Female,39,61000,0 -15610801,Male,42,65000,0 -15745232,Male,26,32000,0 -15722758,Male,30,17000,0 -15792102,Female,26,84000,0 -15675185,Male,31,58000,0 -15801247,Male,33,31000,0 -15725660,Male,30,87000,0 -15638963,Female,21,68000,0 -15800061,Female,28,55000,0 -15578006,Male,23,63000,0 -15668504,Female,20,82000,0 -15687491,Male,30,107000,1 -15610403,Female,28,59000,0 -15741094,Male,19,25000,0 -15807909,Male,19,85000,0 -15666141,Female,18,68000,0 -15617134,Male,35,59000,0 -15783029,Male,30,89000,0 -15622833,Female,34,25000,0 -15746422,Female,24,89000,0 -15750839,Female,27,96000,1 -15749130,Female,41,30000,0 -15779862,Male,29,61000,0 -15767871,Male,20,74000,0 -15679651,Female,26,15000,0 -15576219,Male,41,45000,0 -15699247,Male,31,76000,0 -15619087,Female,36,50000,0 -15605327,Male,40,47000,0 -15610140,Female,31,15000,0 -15791174,Male,46,59000,0 -15602373,Male,29,75000,0 -15762605,Male,26,30000,0 -15598840,Female,32,135000,1 -15744279,Male,32,100000,1 -15670619,Male,25,90000,0 -15599533,Female,37,33000,0 -15757837,Male,35,38000,0 -15697574,Female,33,69000,0 -15578738,Female,18,86000,0 -15762228,Female,22,55000,0 -15614827,Female,35,71000,0 -15789815,Male,29,148000,1 -15579781,Female,29,47000,0 -15587013,Male,21,88000,0 -15570932,Male,34,115000,0 -15794661,Female,26,118000,0 -15581654,Female,34,43000,0 -15644296,Female,34,72000,0 -15614420,Female,23,28000,0 -15609653,Female,35,47000,0 -15594577,Male,25,22000,0 -15584114,Male,24,23000,0 -15673367,Female,31,34000,0 -15685576,Male,26,16000,0 -15774727,Female,31,71000,0 -15694288,Female,32,117000,1 -15603319,Male,33,43000,0 -15759066,Female,33,60000,0 -15814816,Male,31,66000,0 -15724402,Female,20,82000,0 -15571059,Female,33,41000,0 -15674206,Male,35,72000,0 -15715160,Male,28,32000,0 -15730448,Male,24,84000,0 -15662067,Female,19,26000,0 -15779581,Male,29,43000,0 -15662901,Male,19,70000,0 -15689751,Male,28,89000,0 -15667742,Male,34,43000,0 -15738448,Female,30,79000,0 -15680243,Female,20,36000,0 -15745083,Male,26,80000,0 -15708228,Male,35,22000,0 -15628523,Male,35,39000,0 -15708196,Male,49,74000,0 -15735549,Female,39,134000,1 -15809347,Female,41,71000,0 -15660866,Female,58,101000,1 -15766609,Female,47,47000,0 -15654230,Female,55,130000,1 -15794566,Female,52,114000,0 -15800890,Female,40,142000,1 -15697424,Female,46,22000,0 -15724536,Female,48,96000,1 -15735878,Male,52,150000,1 -15707596,Female,59,42000,0 -15657163,Male,35,58000,0 -15622478,Male,47,43000,0 -15779529,Female,60,108000,1 -15636023,Male,49,65000,0 -15582066,Male,40,78000,0 -15666675,Female,46,96000,0 -15732987,Male,59,143000,1 -15789432,Female,41,80000,0 -15663161,Male,35,91000,1 -15694879,Male,37,144000,1 -15593715,Male,60,102000,1 -15575002,Female,35,60000,0 -15622171,Male,37,53000,0 -15795224,Female,36,126000,1 -15685346,Male,56,133000,1 -15691808,Female,40,72000,0 -15721007,Female,42,80000,1 -15794253,Female,35,147000,1 -15694453,Male,39,42000,0 -15813113,Male,40,107000,1 -15614187,Male,49,86000,1 -15619407,Female,38,112000,0 -15646227,Male,46,79000,1 -15660541,Male,40,57000,0 -15753874,Female,37,80000,0 -15617877,Female,46,82000,0 -15772073,Female,53,143000,1 -15701537,Male,42,149000,1 -15736228,Male,38,59000,0 -15780572,Female,50,88000,1 -15769596,Female,56,104000,1 -15586996,Female,41,72000,0 -15722061,Female,51,146000,1 -15638003,Female,35,50000,0 -15775590,Female,57,122000,1 -15730688,Male,41,52000,0 -15753102,Female,35,97000,1 -15810075,Female,44,39000,0 -15723373,Male,37,52000,0 -15795298,Female,48,134000,1 -15584320,Female,37,146000,1 -15724161,Female,50,44000,0 -15750056,Female,52,90000,1 -15609637,Female,41,72000,0 -15794493,Male,40,57000,0 -15569641,Female,58,95000,1 -15815236,Female,45,131000,1 -15811177,Female,35,77000,0 -15680587,Male,36,144000,1 -15672821,Female,55,125000,1 -15767681,Female,35,72000,0 -15600379,Male,48,90000,1 -15801336,Female,42,108000,1 -15721592,Male,40,75000,0 -15581282,Male,37,74000,0 -15746203,Female,47,144000,1 -15583137,Male,40,61000,0 -15680752,Female,43,133000,0 -15688172,Female,59,76000,1 -15791373,Male,60,42000,1 -15589449,Male,39,106000,1 -15692819,Female,57,26000,1 -15727467,Male,57,74000,1 -15734312,Male,38,71000,0 -15764604,Male,49,88000,1 -15613014,Female,52,38000,1 -15759684,Female,50,36000,1 -15609669,Female,59,88000,1 -15685536,Male,35,61000,0 -15750447,Male,37,70000,1 -15663249,Female,52,21000,1 -15638646,Male,48,141000,0 -15734161,Female,37,93000,1 -15631070,Female,37,62000,0 -15761950,Female,48,138000,1 -15649668,Male,41,79000,0 -15713912,Female,37,78000,1 -15586757,Male,39,134000,1 -15596522,Male,49,89000,1 -15625395,Male,55,39000,1 -15760570,Male,37,77000,0 -15566689,Female,35,57000,0 -15725794,Female,36,63000,0 -15673539,Male,42,73000,1 -15705298,Female,43,112000,1 -15675791,Male,45,79000,0 -15747043,Male,46,117000,1 -15736397,Female,58,38000,1 -15678201,Male,48,74000,1 -15720745,Female,37,137000,1 -15637593,Male,37,79000,1 -15598070,Female,40,60000,0 -15787550,Male,42,54000,0 -15603942,Female,51,134000,0 -15733973,Female,47,113000,1 -15596761,Male,36,125000,1 -15652400,Female,38,50000,0 -15717893,Female,42,70000,0 -15622585,Male,39,96000,1 -15733964,Female,38,50000,0 -15753861,Female,49,141000,1 -15747097,Female,39,79000,0 -15594762,Female,39,75000,1 -15667417,Female,54,104000,1 -15684861,Male,35,55000,0 -15742204,Male,45,32000,1 -15623502,Male,36,60000,0 -15774872,Female,52,138000,1 -15611191,Female,53,82000,1 -15674331,Male,41,52000,0 -15619465,Female,48,30000,1 -15575247,Female,48,131000,1 -15695679,Female,41,60000,0 -15713463,Male,41,72000,0 -15785170,Female,42,75000,0 -15796351,Male,36,118000,1 -15639576,Female,47,107000,1 -15693264,Male,38,51000,0 -15589715,Female,48,119000,1 -15769902,Male,42,65000,0 -15587177,Male,40,65000,0 -15814553,Male,57,60000,1 -15601550,Female,36,54000,0 -15664907,Male,58,144000,1 -15612465,Male,35,79000,0 -15810800,Female,38,55000,0 -15665760,Male,39,122000,1 -15588080,Female,53,104000,1 -15776844,Male,35,75000,0 -15717560,Female,38,65000,0 -15629739,Female,47,51000,1 -15729908,Male,47,105000,1 -15716781,Female,41,63000,0 -15646936,Male,53,72000,1 -15768151,Female,54,108000,1 -15579212,Male,39,77000,0 -15721835,Male,38,61000,0 -15800515,Female,38,113000,1 -15591279,Male,37,75000,0 -15587419,Female,42,90000,1 -15750335,Female,37,57000,0 -15699619,Male,36,99000,1 -15606472,Male,60,34000,1 -15778368,Male,54,70000,1 -15671387,Female,41,72000,0 -15573926,Male,40,71000,1 -15709183,Male,42,54000,0 -15577514,Male,43,129000,1 -15778830,Female,53,34000,1 -15768072,Female,47,50000,1 -15768293,Female,42,79000,0 -15654456,Male,42,104000,1 -15807525,Female,59,29000,1 -15574372,Female,58,47000,1 -15671249,Male,46,88000,1 -15779744,Male,38,71000,0 -15624755,Female,54,26000,1 -15611430,Female,60,46000,1 -15774744,Male,60,83000,1 -15629885,Female,39,73000,0 -15708791,Male,59,130000,1 -15793890,Female,37,80000,0 -15646091,Female,46,32000,1 -15596984,Female,46,74000,0 -15800215,Female,42,53000,0 -15577806,Male,41,87000,1 -15749381,Female,58,23000,1 -15683758,Male,42,64000,0 -15670615,Male,48,33000,1 -15715622,Female,44,139000,1 -15707634,Male,49,28000,1 -15806901,Female,57,33000,1 -15775335,Male,56,60000,1 -15724150,Female,49,39000,1 -15627220,Male,39,71000,0 -15672330,Male,47,34000,1 -15668521,Female,48,35000,1 -15807837,Male,48,33000,1 -15592570,Male,47,23000,1 -15748589,Female,45,45000,1 -15635893,Male,60,42000,1 -15757632,Female,39,59000,0 -15691863,Female,46,41000,1 -15706071,Male,51,23000,1 -15654296,Female,50,20000,1 -15755018,Male,36,33000,0 -15594041,Female,49,36000,1 \ No newline at end of file