diff --git a/Code/Day 6_Logistic_Regression.ipynb b/Code/Day 6_Logistic_Regression.ipynb deleted file mode 100644 index 3587465..0000000 --- a/Code/Day 6_Logistic_Regression.ipynb +++ /dev/null @@ -1,202 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 机器学习100天——第6天:逻辑回归(Linear Regression)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 第1步:数据预处理\n", - "### 导入库" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import numpy as numpy\n", - "import matplotlib.pyplot as plt\n", - "import pandas as pd" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 导入数据集\n", - "这里获取数据集" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "dataset = pd.read_csv('../datasets/Social_Network_Ads.csv')\n", - "X = dataset.iloc[:, [2, 3]].values\n", - "Y = dataset.iloc[:,4].values" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 将数据集分成训练集和测试集" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.cross_validation import train_test_split\n", - "X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.25, random_state = 0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 特征缩放" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/ymao/usr/miniconda/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler.\n", - " warnings.warn(msg, DataConversionWarning)\n" - ] - } - ], - "source": [ - "from sklearn.preprocessing import StandardScaler\n", - "sc = StandardScaler()\n", - "X_train = sc.fit_transform(X_train)\n", - "X_test = sc.transform(X_test)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 第二步:逻辑回归模型\n", - "该项工作的库将会是一个线性模型库,之所以被称为线性是因为逻辑回归是一个线性分类器,这意味着我们在二维空间中,我们两类用户(购买和不购买)将被一条直线分割。然后导入逻辑回归类。下一步我们将创建该类的对象,它将作为我们训练集的分类器。\n", - "### 将逻辑回归应用于训练集" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", - " intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,\n", - " penalty='l2', random_state=None, solver='liblinear', tol=0.0001,\n", - " verbose=0, warm_start=False)" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.linear_model import LogisticRegression\n", - "classifier = LogisticRegression()\n", - "classifier.fit(X_train, y_train)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 第3步:预测\n", - "### 预测测试集结果" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "y_pred = classifier.predict(X_test)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 第4步:评估预测\n", - "我们预测了测试集。 现在我们将评估逻辑回归模型是否正确的学习和理解。因此这个混淆矩阵将包含我们模型的正确和错误的预测。\n", - "### 生成混淆矩阵" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "from sklearn.metrics import confusion_matrix\n", - "cm = confusion_matrix(y_test, y_pred)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 可视化\n", - "![](https://github.com/MachineLearning100/100-Days-Of-ML-Code/blob/master/Other%20Docs/LR_training.png?raw=true)\n", - "![](https://github.com/MachineLearning100/100-Days-Of-ML-Code/blob/master/Other%20Docs/LR_test.png?raw=true) " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -}