From ecb9137a12444e1b8e9d8c2c1b81555a35e327e5 Mon Sep 17 00:00:00 2001 From: wengJJ <31797645+wengJJ@users.noreply.github.com> Date: Mon, 6 Aug 2018 09:05:37 +0800 Subject: [PATCH] Add files via upload --- Code/Day2_Simple_Linear_Regression.md | 44 +++++++++++++++++++++++++++ 1 file changed, 44 insertions(+) create mode 100644 Code/Day2_Simple_Linear_Regression.md diff --git a/Code/Day2_Simple_Linear_Regression.md b/Code/Day2_Simple_Linear_Regression.md new file mode 100644 index 0000000..e420646 --- /dev/null +++ b/Code/Day2_Simple_Linear_Regression.md @@ -0,0 +1,44 @@ +# Simple Linear Regression + + +

+ +

+ + +# Step 1: Data Preprocessing +```python +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt + +dataset = pd.read_csv('studentscores.csv') +X = dataset.iloc[ : , : 1 ].values +Y = dataset.iloc[ : , 1 ].values + +from sklearn.cross_validation import train_test_split +X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0) +``` + +# Step 2: Fitting Simple Linear Regression Model to the training set + ```python + from sklearn.linear_model import LinearRegression + regressor = LinearRegression() + regressor = regressor.fit(X_train, Y_train) + ``` + # Step 3: Predecting the Result + ```python + Y_pred = regressor.predict(X_test) + ``` + + # Step 4: Visualization + ## Visualising the Training results + ```python + plt.scatter(X_train , Y_train, color = 'red') + plt.plot(X_train , regressor.predict(X_train), color ='blue') + ``` + ## Visualizing the test results + ```python + plt.scatter(X_test , Y_test, color = 'red') + plt.plot(X_test , regressor.predict(X_test), color ='blue') + ```