diff --git a/Code/Day 6_Logistic_Regression.py b/Code/Day 6_Logistic_Regression.py index 6aa54ce..97388dc 100644 --- a/Code/Day 6_Logistic_Regression.py +++ b/Code/Day 6_Logistic_Regression.py @@ -33,3 +33,39 @@ cm = confusion_matrix(y_test, y_pred) print(cm) # print confusion_matrix print(classification_report(y_test, y_pred)) # print classification report +#Visualization +from matplotlib.colors import ListedColormap +X_set,y_set=X_train,y_train +X1,X2=np. meshgrid(np. arange(start=X_set[:,0].min()-1, stop=X_set[:, 0].max()+1, step=0.01), + np. arange(start=X_set[:,1].min()-1, stop=X_set[:,1].max()+1, step=0.01)) +plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),X2.ravel()]).T).reshape(X1.shape), + alpha = 0.75, cmap = ListedColormap(('red', 'green'))) +plt.xlim(X1.min(),X1.max()) +plt.ylim(X2.min(),X2.max()) +for i,j in enumerate(np. unique(y_set)): + plt.scatter(X_set[y_set==j,0],X_set[y_set==j,1], + c = ListedColormap(('red', 'green'))(i), label=j) + +plt. title(' LOGISTIC(Training set)') +plt. xlabel(' Age') +plt. ylabel(' Estimated Salary') +plt. legend() +plt. show() + +X_set,y_set=X_test,y_test +X1,X2=np. meshgrid(np. arange(start=X_set[:,0].min()-1, stop=X_set[:, 0].max()+1, step=0.01), + np. arange(start=X_set[:,1].min()-1, stop=X_set[:,1].max()+1, step=0.01)) + +plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),X2.ravel()]).T).reshape(X1.shape), + alpha = 0.75, cmap = ListedColormap(('red', 'green'))) +plt.xlim(X1.min(),X1.max()) +plt.ylim(X2.min(),X2.max()) +for i,j in enumerate(np. unique(y_set)): + plt.scatter(X_set[y_set==j,0],X_set[y_set==j,1], + c = ListedColormap(('red', 'green'))(i), label=j) + +plt. title(' LOGISTIC(Test set)') +plt. xlabel(' Age') +plt. ylabel(' Estimated Salary') +plt. legend() +plt. show()