diff --git a/Code/DAY 2.ipynb b/Code/DAY 2.ipynb index f9ec15b..ee89270 100644 --- a/Code/DAY 2.ipynb +++ b/Code/DAY 2.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#机器学习100天——第2天:简单线性回归\n", + "#机器学习100天——第一天:数据预处理\n", "##第一步:数据预处理" ] }, @@ -198,7 +198,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "##第四步:可视化" + "##可视化" ] }, { diff --git a/Code/Day 11 K-NN.md b/Code/Day 11 K-NN.md new file mode 100644 index 0000000..2afaa1a --- /dev/null +++ b/Code/Day 11 K-NN.md @@ -0,0 +1,55 @@ +# K-Nearest Neighbors (K-NN) + +

+ +

+ +## The DataSet | Social Network + +

+ +

+ + +## Importing the libraries +```python +import numpy as np +import matplotlib.pyplot as plt +import pandas as pd +``` + +## Importing the dataset +```python +dataset = pd.read_csv('Social_Network_Ads.csv') +X = dataset.iloc[:, [2, 3]].values +y = dataset.iloc[:, 4].values +``` + +## Splitting the dataset into the Training set and Test set +```python +from sklearn.cross_validation import train_test_split +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) +``` +## Feature Scaling +```python +from sklearn.preprocessing import StandardScaler +sc = StandardScaler() +X_train = sc.fit_transform(X_train) +X_test = sc.transform(X_test) +``` +## Fitting K-NN to the Training set +```python +from sklearn.neighbors import KNeighborsClassifier +classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2) +classifier.fit(X_train, y_train) +``` +## Predicting the Test set results +```python +y_pred = classifier.predict(X_test) +``` + +## Making the Confusion Matrix +```python +from sklearn.metrics import confusion_matrix +cm = confusion_matrix(y_test, y_pred) +``` diff --git a/Code/Day 7.jpg b/Code/Day 7.jpg new file mode 100644 index 0000000..3a7c87e Binary files /dev/null and b/Code/Day 7.jpg differ