# 数据预处理

如图所示,通过6步完成数据预处理。 此例用到的[数据](https://github.com/Avik-Jain/100-Days-Of-ML-Code/blob/master/datasets/Data.csv),[代码](https://github.com/MLEveryday/100-Days-Of-ML-Code/blob/master/Code/Day%201_Data_Preprocessing.py)。 ## 第1步:导入库 ```Python import numpy as np import pandas as pd ``` ## 第2步:导入数据集 ```python //随后一列是label dataset = pd.read_csv('Data.csv')//读取csv文件 X = dataset.iloc[ : , :-1].values//.iloc[行,列] Y = dataset.iloc[ : , 3].values // : 全部行 or 列;[a]第a行 or 列 // [a,b,c]第 a,b,c 行 or 列 ``` ## 第3步:处理丢失数据 ```python from sklearn.preprocessing import Imputer imputer = Imputer(missing_values = "NaN", strategy = "mean", axis = 0) imputer = imputer.fit(X[ : , 1:3]) X[ : , 1:3] = imputer.transform(X[ : , 1:3]) ``` ## 第4步:解析分类数据 ```python from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_X = LabelEncoder() X[ : , 0] = labelencoder_X.fit_transform(X[ : , 0]) ``` ### 创建虚拟变量 ```python onehotencoder = OneHotEncoder(categorical_features = [0]) X = onehotencoder.fit_transform(X).toarray() labelencoder_Y = LabelEncoder() Y = labelencoder_Y.fit_transform(Y) ``` ## 第5步:拆分数据集为训练集合和测试集合 ```python #from sklearn.model_selection import train_test_split from sklearn.cross_validation import train_test_split X_train, X_test, Y_train, Y_test = train_test_split( X , Y , test_size = 0.2, random_state = 0) ``` ## 第6步:特征量化 ```python from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) ```