# 多元线性回归

## 第1步: 数据预处理 ### 导入库 ```python import pandas as pd import numpy as np ``` ### 导入数据集 ```python dataset = pd.read_csv('50_Startups.csv') X = dataset.iloc[ : , :-1].values Y = dataset.iloc[ : , 4 ].values ``` ### 将类别数据数字化 ```python from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder = LabelEncoder() X[: , 3] = labelencoder.fit_transform(X[ : , 3]) onehotencoder = OneHotEncoder(categorical_features = [3]) X = onehotencoder.fit_transform(X).toarray() ``` ### 躲避虚拟变量陷阱 ```python X = X[: , 1:] ``` ### 拆分数据集为训练集和测试集 ```python from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0) ``` ## 第2步: 在训练集上训练多元线性回归模型 ```python from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, Y_train) ``` ## Step 3: 在测试集上预测结果 ```python y_pred = regressor.predict(X_test) ```