{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 机器学习100天——第1天:数据预处理(Data Preprocessing)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "搭建anaconda环境,参考 https://zhuanlan.zhihu.com/p/33358809\n", "\n", "## 第一步:导入需要的库\n", "这两个是我们每次都需要导入的库。NumPy包含数学计算函数。Pandas用于导入和管理数据集。" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[[ 7. 2. 3. ]\n [ 4. 3.5 6. ]\n [10. 3.5 9. ]]\nSklearn verion is 0.23.1\n" ] } ], "source": [ "import sklearn\n", "from sklearn.impute import SimpleImputer\n", "#This block is an example used to learn SimpleImputer\n", "imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')\n", "imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]])\n", "X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]]\n", "print(imp_mean.transform(X))\n", "print(\"Sklearn verion is {}\".format(sklearn.__version__))" ] }, { "source": [ "from sklearn.preprocessing import OneHotEncoder\n", "enc = OneHotEncoder(handle_unknown='ignore')\n", "X = [['Male', 1], ['Female', 3], ['Female', 2]]\n", ">>> enc.fit(X)\n", "OneHotEncoder(handle_unknown='ignore')\n", ">>> enc.categories_\n", "[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]\n", ">>> enc.transform([['Female', 1], ['Male', 4]]).toarray()\n", "array([[1., 0., 1., 0., 0.],\n", " [0., 1., 0., 0., 0.]])\n", ">>> enc.inverse_transform([[0, 1, 1, 0, 0], [0, 0, 0, 1, 0]])\n", "array([['Male', 1],\n", " [None, 2]], dtype=object)\n", ">>> enc.get_feature_names(['gender', 'group'])\n", "array(['gender_Female', 'gender_Male', 'group_1', 'group_2', 'group_3'],\n", " dtype=object)" ], "cell_type": "code", "metadata": {}, "execution_count": 4, "outputs": [ { "output_type": "error", "ename": "SyntaxError", "evalue": "invalid syntax (, line 4)", "traceback": [ "\u001b[1;36m File \u001b[1;32m\"\"\u001b[1;36m, line \u001b[1;32m4\u001b[0m\n\u001b[1;33m >>> enc.fit(X)\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m invalid syntax\n" ] } ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 第二步:导入数据集\n", "数据集通常是.csv格式。CSV文件以文本形式保存表格数据。文件的每一行是一条数据记录。我们使用Pandas的read_csv方法读取本地csv文件为一个数据帧。然后,从数据帧中制作自变量和因变量的矩阵和向量。" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Step 2: Importing dataset\nX\n[['France' 44.0 72000.0]\n ['Spain' 27.0 48000.0]\n ['Germany' 30.0 54000.0]\n ['Spain' 38.0 61000.0]\n ['Germany' 40.0 nan]\n ['France' 35.0 58000.0]\n ['Spain' nan 52000.0]\n ['France' 48.0 79000.0]\n ['Germany' 50.0 83000.0]\n ['France' 37.0 67000.0]]\nY\n['No' 'Yes' 'No' 'No' 'Yes' 'Yes' 'No' 'Yes' 'No' 'Yes']\n[[44.0 72000.0]\n [27.0 48000.0]\n [30.0 54000.0]\n [38.0 61000.0]\n [40.0 nan]\n [35.0 58000.0]\n [nan 52000.0]\n [48.0 79000.0]\n [50.0 83000.0]\n [37.0 67000.0]]\n" ] } ], "source": [ "dataset = pd.read_csv('../datasets/Data.csv')\n", "# 不包括最后一列的所有列\n", "X = dataset.iloc[ : , :-1].values\n", "#取最后一列\n", "Y = dataset.iloc[ : , 3].values\n", "print(\"Step 2: Importing dataset\")\n", "print(\"X\")\n", "print(X)\n", "print(\"Y\")\n", "print(Y)\n", "print(X[ : , 1:3])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 第三步:处理丢失数据\n", "我们得到的数据很少是完整的。数据可能因为各种原因丢失,为了不降低机器学习模型的性能,需要处理数据。我们可以用整列的平均值或中间值替换丢失的数据。我们用sklearn.preprocessing库中的Imputer类完成这项任务。" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "---------------------\nStep 3: Handling the missing data\nstep2\nX\n[['France' 44.0 72000.0]\n ['Spain' 27.0 48000.0]\n ['Germany' 30.0 54000.0]\n ['Spain' 38.0 61000.0]\n ['Germany' 40.0 63777.77777777778]\n ['France' 35.0 58000.0]\n ['Spain' 38.77777777777778 52000.0]\n ['France' 48.0 79000.0]\n ['Germany' 50.0 83000.0]\n ['France' 37.0 67000.0]]\n" ] } ], "source": [ "# If you use the newest version of sklearn, use the lines of code commented out\n", "from sklearn.impute import SimpleImputer\n", "imputer = SimpleImputer(missing_values=np.nan, strategy=\"mean\")\n", "#from sklearn.preprocessing import Imputer\n", "# axis=0表示按列进行\n", "#imputer = Imputer(missing_values = \"NaN\", strategy = \"mean\", axis = 0)\n", "#print(imputer)\n", "#\n", "# print(X[ : , 1:3])\n", "imputer = imputer.fit(X[ : , 1:3]) #put the data we want to process in to this imputer\n", "X[ : , 1:3] = imputer.transform(X[ : , 1:3]) #replace the np.nan with mean\n", "#print(X[ : , 1:3])\n", "print(\"---------------------\")\n", "print(\"Step 3: Handling the missing data\")\n", "print(\"step2\")\n", "print(\"X\")\n", "print(X)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 第四步:解析分类数据\n", "分类数据指的是含有标签值而不是数字值的变量。取值范围通常是固定的。例如\"Yes\"和\"No\"不能用于模型的数学计算,所以需要解析成数字。为实现这一功能,我们从sklearn.preprocessing库导入LabelEncoder类。" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "---------------------\nStep 4: Encoding categorical data\nX\n[[1.0 0.0 0.0 44.0 72000.0]\n [0.0 0.0 1.0 27.0 48000.0]\n [0.0 1.0 0.0 30.0 54000.0]\n [0.0 0.0 1.0 38.0 61000.0]\n [0.0 1.0 0.0 40.0 63777.77777777778]\n [1.0 0.0 0.0 35.0 58000.0]\n [0.0 0.0 1.0 38.77777777777778 52000.0]\n [1.0 0.0 0.0 48.0 79000.0]\n [0.0 1.0 0.0 50.0 83000.0]\n [1.0 0.0 0.0 37.0 67000.0]]\nY\n[0 1 0 0 1 1 0 1 0 1]\n" ] } ], "source": [ "from sklearn.preprocessing import LabelEncoder, OneHotEncoder\n", "from sklearn.compose import ColumnTransformer \n", "#labelencoder_X = LabelEncoder()\n", "#X[ : , 0] = labelencoder_X.fit_transform(X[ : , 0])\n", "#Creating a dummy variable\n", "#print(X)\n", "ct = ColumnTransformer([(\"\", OneHotEncoder(), [0])], remainder = 'passthrough')\n", "X = ct.fit_transform(X)\n", "#onehotencoder = OneHotEncoder(categorical_features = [0])\n", "#X = onehotencoder.fit_transform(X).toarray()\n", "labelencoder_Y = LabelEncoder()\n", "Y = labelencoder_Y.fit_transform(Y)\n", "print(\"---------------------\")\n", "print(\"Step 4: Encoding categorical data\")\n", "print(\"X\")\n", "print(X)\n", "print(\"Y\")\n", "print(Y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 第五步:拆分数据集为测试集合和训练集合\n", "把数据集拆分成两个:一个是用来训练模型的训练集合,另一个是用来验证模型的测试集合。两者比例一般是80:20。我们导入sklearn.model_selection库中的train_test_split()方法。" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "---------------------\nStep 5: Splitting the datasets into training sets and Test sets\nX_train\n[[0.0 1.0 0.0 40.0 63777.77777777778]\n [1.0 0.0 0.0 37.0 67000.0]\n [0.0 0.0 1.0 27.0 48000.0]\n [0.0 0.0 1.0 38.77777777777778 52000.0]\n [1.0 0.0 0.0 48.0 79000.0]\n [0.0 0.0 1.0 38.0 61000.0]\n [1.0 0.0 0.0 44.0 72000.0]\n [1.0 0.0 0.0 35.0 58000.0]]\nX_test\n[[0.0 1.0 0.0 30.0 54000.0]\n [0.0 1.0 0.0 50.0 83000.0]]\nY_train\n[1 1 1 0 1 0 0 1]\nY_test\n[0 0]\n" ] } ], "source": [ "from sklearn.model_selection import train_test_split\n", "X_train, X_test, Y_train, Y_test = train_test_split( X , Y , test_size = 0.2, random_state = 0)\n", "print(\"---------------------\")\n", "print(\"Step 5: Splitting the datasets into training sets and Test sets\")\n", "print(\"X_train\")\n", "print(X_train)\n", "print(\"X_test\")\n", "print(X_test)\n", "print(\"Y_train\")\n", "print(Y_train)\n", "print(\"Y_test\")\n", "print(Y_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 第六步:特征量化\n", "大部分模型算法使用两点间的欧氏距离表示,但此特征在幅度、单位和范围姿态问题上变化很大。在距离计算中,高幅度的特征比低幅度特征权重更大。可用特征标准化或Z值归一化解决。导入sklearn.preprocessing库的StandardScalar类。" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "---------------------\nStep 6: Feature Scaling\nX_train\n[[-1. 2.64575131 -0.77459667 0.26306757 0.12381479]\n [ 1. -0.37796447 -0.77459667 -0.25350148 0.46175632]\n [-1. -0.37796447 1.29099445 -1.97539832 -1.53093341]\n [-1. -0.37796447 1.29099445 0.05261351 -1.11141978]\n [ 1. -0.37796447 -0.77459667 1.64058505 1.7202972 ]\n [-1. -0.37796447 1.29099445 -0.0813118 -0.16751412]\n [ 1. -0.37796447 -0.77459667 0.95182631 0.98614835]\n [ 1. -0.37796447 -0.77459667 -0.59788085 -0.48214934]]\nX_test\n[[-1. 2.64575131 -0.77459667 -1.45882927 -0.90166297]\n [-1. 2.64575131 -0.77459667 1.98496442 2.13981082]]\n" ] } ], "source": [ "from sklearn.preprocessing import StandardScaler\n", "sc_X = StandardScaler()\n", "X_train = sc_X.fit_transform(X_train)\n", "X_test = sc_X.transform(X_test) #we should not use fit_transfer cause the u and z is determined from x_train\n", "print(\"---------------------\")\n", "print(\"Step 6: Feature Scaling\")\n", "print(\"X_train\")\n", "print(X_train)\n", "print(\"X_test\")\n", "print(X_test)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "完整的项目请前往Github项目100-Days-Of-ML-Code查看。有任何的建议或者意见欢迎在issue中提出~" ] } ], "metadata": { "kernelspec": { "name": "python3", "display_name": "Python 3.8.3 64-bit (conda)", "metadata": { "interpreter": { "hash": "1b78ff499ec469310b6a6795c4effbbfc85eb20a6ba0cf828a15721670711b2c" } } }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3-final" } }, "nbformat": 4, "nbformat_minor": 2 }