{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 机器学习100天——第二天:简单线性回归\n", "## 第一步:数据预处理" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "这里导入我们需要的库,值得注意的是,这里比第一天多了一个matplotlib.pyplot,matplotlib是python上的一个2D绘图库,\n", "matplotlib下的模块pyplot是一个有命令样式的函数集合,\n", "matplotlib.pyplot是为我们对结果进行图像化作准备的。" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "导入相关数据" ] }, { "cell_type": "code", "execution_count": 90, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " Hours Scores\n0 2.5 21\n1 5.1 47\n2 3.2 27\n3 8.5 75\n4 3.5 30\n5 1.5 20\n6 9.2 88\n7 5.5 60\n8 8.3 81\n9 2.7 25\n10 7.7 85\n11 5.9 62\n12 4.5 41\n13 3.3 42\n14 1.1 17\n15 8.9 95\n16 2.5 30\n17 1.9 24\n18 6.1 67\n19 7.4 69\n20 2.7 30\n21 4.8 54\n22 3.8 35\n23 6.9 76\n24 7.8 86\n25 2.1 93\n26 2.2 93\n27 2.5 93\n Hours Scores\n15 8.9 95\n27 2.5 93\n26 2.2 93\n25 2.1 93\n6 9.2 88\n24 7.8 86\n10 7.7 85\n8 8.3 81\n23 6.9 76\n3 8.5 75\n19 7.4 69\n18 6.1 67\n11 5.9 62\n7 5.5 60\n21 4.8 54\n1 5.1 47\n13 3.3 42\n12 4.5 41\n22 3.8 35\n20 2.7 30\n4 3.5 30\n16 2.5 30\n2 3.2 27\n9 2.7 25\n17 1.9 24\n0 2.5 21\n5 1.5 20\n14 1.1 17\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ " Hours Scores\n", "0 2.5 21\n", "1 5.1 47\n", "2 3.2 27\n", "3 8.5 75\n", "4 3.5 30\n", "5 1.5 20\n", "6 9.2 88\n", "7 5.5 60\n", "8 8.3 81\n", "9 2.7 25\n", "10 7.7 85\n", "11 5.9 62\n", "12 4.5 41\n", "13 3.3 42\n", "14 1.1 17\n", "15 8.9 95\n", "16 2.5 30\n", "17 1.9 24\n", "18 6.1 67\n", "19 7.4 69\n", "20 2.7 30\n", "21 4.8 54\n", "22 3.8 35\n", "23 6.9 76\n", "24 7.8 86\n", "25 2.1 93\n", "26 2.2 93\n", "27 2.5 93" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
HoursScores
02.521
15.147
23.227
38.575
43.530
51.520
69.288
75.560
88.381
92.725
107.785
115.962
124.541
133.342
141.117
158.995
162.530
171.924
186.167
197.469
202.730
214.854
223.835
236.976
247.886
252.193
262.293
272.593
\n
" }, "metadata": {}, "execution_count": 90 } ], "source": [ "dataset = pd.read_csv('../datasets/studentscores.csv')\n", "print(dataset)\n", "df = dataset.sort_values(\"Scores\",ascending=False)\n", "print(df)\n", "dataset.head(30)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "这里我们需要使用pandas的iloc(区分于loc根据index来索引,iloc利用行号来索引)方法来对数据进行处理,第一个参数为行号,:表示全部行,第二个参数 :1表示截到第1列(也就是取第0列)" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "X: [[2.5]\n [5.1]\n [3.2]\n [8.5]\n [3.5]\n [1.5]\n [9.2]\n [5.5]\n [8.3]\n [2.7]\n [7.7]\n [5.9]\n [4.5]\n [3.3]\n [1.1]\n [8.9]\n [2.5]\n [1.9]\n [6.1]\n [7.4]\n [2.7]\n [4.8]\n [3.8]\n [6.9]\n [7.8]]\nY: [[21]\n [47]\n [27]\n [75]\n [30]\n [20]\n [88]\n [60]\n [81]\n [25]\n [85]\n [62]\n [41]\n [42]\n [17]\n [95]\n [30]\n [24]\n [67]\n [69]\n [30]\n [54]\n [35]\n [76]\n [86]]\n" ] } ], "source": [ "X = dataset.iloc[ 0: 25, : 1 ].values\n", "Y = dataset.iloc[ 0: 25, -1: ].values\n", "print(\"X:\",X)\n", "print(\"Y:\",Y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "导入sklearn库的cross_validation类来对数据进行训练集、测试集划分" ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[[7.8]\n [6.9]\n [1.1]\n [5.1]\n [7.7]\n [3.3]\n [8.3]\n [9.2]\n [6.1]\n [3.5]\n [2.7]\n [5.5]\n [2.7]\n [8.5]\n [2.5]\n [4.8]\n [8.9]\n [4.5]] [[1.5]\n [3.2]\n [7.4]\n [2.5]\n [5.9]\n [3.8]\n [1.9]]\n[[86]\n [76]\n [17]\n [47]\n [85]\n [42]\n [81]\n [88]\n [67]\n [30]\n [25]\n [60]\n [30]\n [75]\n [21]\n [54]\n [95]\n [41]] [[20]\n [27]\n [69]\n [30]\n [62]\n [35]\n [24]]\n" ] } ], "source": [ "from sklearn.model_selection import train_test_split\n", "#拆分数据,0.25作为测试集\n", "X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0) \n", "print(X_train,X_test)\n", "print(Y_train,Y_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 训练线性回归" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [], "source": [ "from sklearn.linear_model import LinearRegression\n", "#使用训练集对模型进行训练\n", "regressor = LinearRegression()\n", "regressor = regressor.fit(X_train, Y_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 预测结果" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[[16.84472176]\n [33.74557494]\n [75.50062397]\n [26.7864001 ]\n [60.58810646]\n [39.71058194]\n [20.8213931 ]]\n[[20]\n [27]\n [69]\n [30]\n [62]\n [35]\n [24]]\n" ] } ], "source": [ "Y_pred = regressor.predict(X_test)\n", "print(Y_pred)\n", "print(Y_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 可视化" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 训练集结果可视化" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZyklEQVR4nO3de4ycdb3H8fe3LbcClWIvlNLuikFQESmuRTSpl4I5XBQ8XqJZawM1PUHQwiFKlRBzEpvDMdUAtgilXAqtEOQiBBBpAAUxFLcFpVgIot2lsG0Xyk0W6GW/54/fM+7M7MzuzOwz8zzPzOeVkN3nmd2dL1A+/Pb3fH+/n7k7IiKSPWOSLkBERGqjABcRySgFuIhIRinARUQySgEuIpJR4xr5ZpMmTfL29vZGvqWISOatX7/+ZXefXHy/oQHe3t5OV1dXI99SRCTzzKy71H1NoYiIZJQCXEQkoxTgIiIZpQAXEckoBbiISEYpwEVEqrFmDbS3w5gx4eOaNYmV0tA2QhGRTFuzBhYuhP7+cN3dHa4BOjsbXo5G4CIilbroosHwzunvD/cToAAXEalUT0919+tMAS4iUqmZM6u7T32nzBXgIiKVWrIExo8vvDd+fLhfQm7KvLsb3AenzOMKcQW4iEilOjthxQpoawOz8HHFirIPMOs9ZW6NPBOzo6PDtZmViLSCN9+ECRNKv2YGAwOV/ywzW+/uHcX3NQIXEYnZ0qXlwxuGnTKvivrARURismULzJgxeH3SSfDoo4XTKMNMmVdNI3ARkRicdVZhePf2wv33VzVlXjUFuIhIFYrbAn/ykxDO110XXl++PHScHHJIuO7shM2bw5z35s3xLtjUFIqISIVKraS/+OLw+UEHwYsvDu0yrCcFuIhIhUq1BQJMmQLbtjW+Hk2hiIhUqNyK+b6+xtaRowAXEanAjBlhbruUuNoCq6UAFxEZxuOPh4eUW7aUfj3OtsBqKcBFRMowg+OPH7zesAFWr66yLbCOu1npIaaISJFrr4UFCwavjzwSnnkmfD5rVhWtgHU+AEJ7oYiIRHbtgr33LrzX1weTJtX4A9vbQ2gXa2sLTeEV0l4oIiLDWLiwMLzPOSc8tKw5vKHuB0BoCkVEWs6aNaGnu6cHpk8f+oBy1y4YF0c6zpxZegQeU9uKRuAikh4NOPG9+JCF/PC+4YZwL5bwhqoPgKiWAlxE0qHex9dEyq2mbGuDefNifauqD4Colh5iikhy8ucyxoyBPXuGfk2VD/xGYlb+fjWHLDSSHmKKSLoUj7hLhTfE9sDv/PPLhzckt5pyNBTgIpKMcnMZxWpM1vzpdDO49NLB1/bbr/Brk1xNORoKcBFJRiUj6xqTtXhwn3PQQeH66qvrd8hCI6mNUESSUa7FbuzYMBk9c2YI7xqS9cILSw/u3/Oe8LGzM5uBXUwjcBFJRrkWu1WrRnV8jVk4WKGUmKbTU0MBLiLJiLnF7p57hn9ICdl8UDkcTaGISHJimssoDu7zz4errqrfafBpoRG4iGTW978/NLzd4ec/r+9p8GmhEbiIZM7OnbDPPoX3nn8eDj988LpZHlQORyNwEcmUww8vDO+pU8OoOz+8gYbsq5I0jcBFJBN6esJUSL533hk6EgfqfpBCWlQ0Ajez883saTPbaGY3mdm+Znawma01s+eijxPrXayItKbcPHbOueeGUXfJ8IbSqzz7+8P9JjJigJvZdOB7QIe7Hw2MBb4OLAYecPcjgAeiaxGR2Pz2t6UfUv7iFyN8Y50PUkiLSufAxwH7mdk4YDzwEnA6sCp6fRVwRvzliUgrKd6/5JRTBl+7/fbCZfHDKtfw3WSN4CMGuLu/CCwFeoBe4HV3vx+Y6u690df0AlNKfb+ZLTSzLjPr6uvri69yEWkq5fYvgXD9pS9V8cPqfJBCWlQyhTKRMNp+H3AosL+ZfbPSN3D3Fe7e4e4dkydPrr1SEWk6+SPu+fPLH7RQtTofpJAWlXShnAj80937AMzsduCTwDYzm+buvWY2DdhexzpFpMkUN4rEvh14CzSCVzIH3gN8wszGm5kBc4FNwF3A/Ohr5gN31qdEEWlGdd4OvCWMOAJ393VmdiuwAdgNPAGsAA4AbjGzBYSQ/2o9CxWR5lJqJ9liTThtHauKulDc/cfufpS7H+3u89z9XXd/xd3nuvsR0ccd9S5WRLLviiuG3zVw7NimnraOlVZiikjDFAf3XnvBrl2D1+PHK7Srob1QRKTu+4accELpBTnXXdf0jSJ1pRG4SKur474hpXYNfOwxOP74wR+vwK6dRuAira5O+4aYDQ1v98HwTlST7FSoABdpdTHvG/Lss0OnS954o4pl8PVWvOQz9xtHBkNcAS7S6mLcN8QMjjpq8HrKlJCRBx5YY2310EQ7FSrARVpdDPuGXH116YeU27bFUF/cmminQgW4SKsb5b4hZoPPPAEuvjhF0yWlNNFOhepCEZGa2kE+/Wl4+OHCe6kO7pwlSwq7biCzSz41AheRquzcGUbd+eH96KMZCW9oqp0KNQIXkYqVWgKfmeDO1yQN6BqBi8iInntuaHi/9lpGw7uJaAQuIsMqDu6JE2GHtq5LBY3ARaSka68t3Rqo8E4PBbiIDFlZbgYLFgy+fuGFmi5JI02hiLS4UntZ5VNwp5dG4CItrtzRZlOnKrzTTgEu0uLKHW22XceUp54CXKRFPf/88EebZXBlecvRHLhICxouuCGzK8tbjkbgIi3kxhuHhvfAAKxe3RQry1uORuAiLaI4uC+4AJYuDZ83ycrylqMAF2lyp54K995beE/dJc1BUygiaRLjWY27d4dRd354P/SQwruZaAQukhYxng7fNLsGyrA0AhdJixjOaty8eWh4v/KKwrtZaQQukhajPKuxOLjHjYNdu0ZZk6SaRuAiaVHjWY2/+lXp1kCFd/NTgIukRQ2nw5sVTo8vWhSmS0ZaqCPNQQEukhZVnNV4+uml9+q+9NIG1SqpoDlwkTQZYUXNnj1hbjvf2rVw4ol1rktSSQEukhFqDZRimkIRSbmenqHh3den8BYFuEiqlDrarK2t8GvcYdKkJKqTtNEUikhKjHS02cCAukukkEbgIilR7mizAw5Qa6CUpgAXSYlyR5u99VZj65DsUICLJGzPHh1tJrXRHLhIgnS0mYxGRSNwMzvIzG41s2fMbJOZnWBmB5vZWjN7Lvo4sd7FiqTGKPft3rJlaHhv26ajzaQ65hU0k5rZKuARd19pZnsD44EfATvc/RIzWwxMdPcLh/s5HR0d3tXVFUfdIskpbheBMFSuMG21IEeqZWbr3b2j+P6II3AzmwDMAa4BcPed7v4acDqwKvqyVcAZ8ZUrkmI17tt9222ldw1UeEutKplCORzoA64zsyfMbKWZ7Q9MdfdegOjjlFLfbGYLzazLzLr6+vpiK1wkMTXs220GX/nK4PW3v63WQBm9SgJ8HHAc8Et3nwW8BSyu9A3cfYW7d7h7x+TJk2ssUyRFqti3+xvfKL1r4NVX16EuaTmVBPgWYIu7r4uubyUE+jYzmwYQfdxenxJFUqaCfbtzqyZvvnnwS+65R9MlEq8RA9zdtwIvmNmR0a25wN+Au4D50b35wJ11qVAkbUbYt9sMxo4t/BZ3OOWUBGqVplZpF8qxwEpgb+AfwJmE8L8FmAn0AF919x3D/Rx1oUgze+klmD698N7WrTB1ajL1SPMo14VS0UIed38SGPLNhNG4SMtTa6AkQUvpRWqQv45HrYGSFAW4SJVy63i6uwuDes4ctQZKY2kvFJEqLVgA77479H653QRF6kUBLlKhgYGh3SX5hlnHI1IXCnCRClQyLaJtX6XRNAcuMoxSBwpfdtmI63hEGkIBLs1jlFu8Fit3oPD3vjfsOh6RhlGAS3Mobg3p7g7XNYT4jTcOHXXv2VPYcdLZCZs3h3nxzZsV3pIMBbg0hxq3eC1mBt/61uD17NkhuMfovxRJIf2xlOZQ5RavxbMtRx1VetfAdetKfbdIOijApTlUscVrqdmWZ58dfH3lSq2klGxQgEtzqGCL15xSsy057mGhjkgWKMClOYywxWu+crMtWgIvWaOFPNI8OjtHbAcZLqS1EEeyRiNwaQk33zx8eGshjmSRAlyanlk4mzJn1ixYvVoLcST7NIUiTWPNmvCAsqcnTIcceCBs3Fj4NcWLcUSyTCNwaQqlWgPzw/vKK9UaKM1HI3BpCiO1Boo0I43ApSmoNVBakUbgknlqDZRWpRG4ZNavf63WQGltCnDJJDP42tcGrz/8YbUGSutRgEumnHZa6V0DN26sco/umA9/EEmCAlxSLT9nzeCeewZfW7asxg6TGA9/EEmSeQN7rDo6Oryrq6th7yfZlsvZUu2Bo/pj294eQrtYW1sYuoukjJmtd/eO4vsagUtqLV5cOryLz6msWpWHP4iklQJcUskMtmwp/dqoc7aKwx9E0kwBLqly770jL74Zdc5WcfiDSJppIY+kRnFwv//90NtbOI0SS87m2lPyd75askQ9h5I5GoFL4s48s3Rr4N//XvEhO9WrqudQJJ00ApfEuIf2wHxXXRU6T3IqOGRHpGUpwCURpea5tWugSHU0hSIN9corQ8P72WcV3iK10AhcGkajbpF4aQTeShLa/+P++4eG986dCm+R0dIIvFUUr0vP7f8BdX1KWBzcs2bBhg11ezuRlqIReKsodeZYf3+4XwcLF5ZuDaw6vLVroEhZGoG3igbt/1GqNXDZMjjnnBp+WEK/NYhkRcUjcDMba2ZPmNnd0fXBZrbWzJ6LPk6sX5kyag3Y/8NsaHi71xje0PDfGkSyppoplEXAprzrxcAD7n4E8EB0LWlVx/0/Xn116HTJM8/E8JBSuwaKDKuiADezw4BTgZV5t08HVkWfrwLOiLc0iVVnZ13WpZvBwQcX3nOHI48c1Y8NtGugyLAqHYFfCvwAGMi7N9XdewGij1Nirk3iFuP+Hw880IDWQO0aKDKsEQPczE4Dtrv7+lrewMwWmlmXmXX19fXV8iMkZczgxBMHrz/ykRDce+0V8xvV6bcGkWYx4pFqZva/wDxgN7AvMAG4Hfg48Bl37zWzacDv3X3YX5x1pFq2nXsuLF9eeE+LcUTqr+Yj1dz9h+5+mLu3A18HHnT3bwJ3AfOjL5sP3BljvZIyZoXhfdllCm+RpI2mD/wS4BYzWwD0AF+NpyRJE+1fIpJeVa3EdPffu/tp0eevuPtcdz8i+rijPiVKIxQveLz66qHh/fTTCm+RNNFKTBl2wWOOglskfbQXipRc8JjzzjsKb5G0UoBL2YWNZrDPPo2tRUQqpwBvceedV36ErQWPIummAG8hxQ8qzUI7YCla8CiSfgrwFpF7UNndHUbc3d2Fr69erQWPIlmjLpQWUe5B5bRp8NJL4XMFtki2aATeIopH3Dlbtza2DhGJjwK8yT35ZOnVlDl6UCmSXZpCaWLFwT12LOzZM3itB5Ui2aYReBO6/PLSBwqvWqUHlSLNRCPwJlMc3NdfD/OjPSM7OxXYIs1EAd4kTjgBHnus8J6WwIs0NwV4xvX3w/77F9579ln4wAeSqUdEGkcBnmHaq1uktekhZgb99a9Dw1u7Boq0HgV42hRvWLJmTcHLZvDRjw5en3xyCO5R7xo4wvuKSPpoCiVNhjlZYflrnZx7buGXxzbiHu5EB7WtiKTWiKfSx0mn0o+gvb3kmnej8N/RNdfAWWfV/31pa4PNm2N8IxGpRc2n0ksD9fTwHX7BOHZhDGDsGRLe7jGHd/S+Vd0XkVRQgKfId8Zfxy85hz2MA4z8fz2bNtXxIWW5DVG0UYpIqinAU2TF2/MIwV1o7JgBjjqqjm+8ZEnYGCWfNkoRST0FeEps3w57Bkr/6yh3PzadnWFjFG2UIpIpCvAEFHfsTZoEU6eW//qxYxtQVGdneGA5MBA+KrxFUk9thA1WqmNvJLmOPhGRfBqBN1i5o80OOSQ8pDz77MER99ix4fqKKxpbo4hkg/rAG2zMmNLdJGZh9kJEpJj6wBM2MBC2fC33/0t17IlItRTgDXD33WE6JLdfd/G+JQUde9qTREQqpACvo7feCnt1f+EL4Xr2bNi9OyyFL9mxl3vC2d0dhuq5PUkU4iJSgubA6+Tyy2HRosHrDRtg1qwRvkl7kohICeXmwNVGGLPeXjj00MHrBQtg5coKv1l7kohIFTSFEqOzzy4M7y1bqghv0J4kIlIVBXgMcifkXHlluP7Zz8IU9vTpVf4g7UkiIlXQFMooDAzAnDnw6KPhep994OWX4YADavyBueXrF10Upk1mzgzhrWXtIlKCRuA1uvfe0BqYC+/f/CacS1lzeOdoTxIRqZBG4FXq7w/L3t98M1zPng1/+lODNpwSEcmjEXgVli0Lfd258F6/HtatqyG8tVhHRGKgEXgFtm6FadMGr6tqDSymA4RFJCYagY/g3HMLw/uFF0YR3lB6O8L+/nBfRKQKIwa4mc0ws4fMbJOZPW1mi6L7B5vZWjN7Lvo4sf7lNs5TT4XWwOXLw/XSpaE18LDDRvmDtVhHRGJSyQh8N3CBu38Q+ARwjpl9CFgMPODuRwAPRNeZl2sNPOaYcL333mHO+4ILYnoDLdYRkZiMGODu3uvuG6LP3wQ2AdOB04FV0ZetAs6oV5GNct994YHkI4+E6zvugHffjaE1MJ8W64hITKp6iGlm7cAsYB0w1d17IYS8mU0p8z0LgYUAM1M6yuzvD/Pcb7wRro87Dh5/vE6tgVqsIyIxqXg3QjM7APgDsMTdbzez19z9oLzXX3X3YefB07gb4fLl4UFlTlcXfOxjydUjIlJsVLsRmtlewG3AGne/Pbq9zcymRaPvacD2+Mqtv+LWwPnz4frrEytHRKRqlXShGHANsMndf5730l3A/Ojz+cCd8ZdXH9/9bmF49/QovEUkeyrpQvkUMA/4nJk9Gf11CnAJcJKZPQecFF3HL8ZVixs3htbAZcvC9U9/GloDZ8yIpVIRkYYacQrF3f8IWJmX58ZbTpGYVi0ODMBnPwsPPxyux4yB116DAw+MuV4RkQZK90rMGFYt/u53oZskF9633QZ79ii8RST70r0XyihWLb79dlg1uWNHuD72WPjzn2Fcuv+ORUQqlu4ReI2rFq+8MqyNyYX344/DE08ovEWkuaQ7wKtctbhtW3hIefbZ4XrevPCQ8uMfr3OdIiIJSHeAd3bCihXQ1haSua0tXJd4gHneeeGghZzubrjhhgbWKiLSYOmfVOjsHLbj5Omn4eijB68vuQQuvLABdYmIJCz9AV7GwACcdBI8+ODgvddfhwkTkqtJRKSR0j2FUsbataE1MBfet94a5roV3iLSSlIf4PkLMWfODP3bn/98eO2YY2DXLvjylxMtUUQkEameQileiPnCC4OvrVsXToQXEWlVqR6Bl1qICaEZReEtIq0u1QGu4yNFRMpLdYDr+EgRkfJSHeA6PlJEpLxUB3gVCzFFRFpOqrtQYMSFmCIiLSvVI3ARESlPAS4iklEKcBGRjFKAi4hklAJcRCSjzN0b92ZmfUB3hV8+CXi5juXUSnVVLo01QTrrSmNNkM660lgT1LeuNnefXHyzoQFeDTPrcveOpOsoproql8aaIJ11pbEmSGddaawJkqlLUygiIhmlABcRyag0B/iKpAsoQ3VVLo01QTrrSmNNkM660lgTJFBXaufARURkeGkegYuIyDAU4CIiGZW6ADeza81su5ltTLqWfGY2w8weMrNNZva0mS1KQU37mtnjZvaXqKb/SbqmHDMba2ZPmNndSdeSY2abzewpM3vSzLqSrifHzA4ys1vN7Jnoz9cJCddzZPTPKPfXG2Z2XpI15ZjZ+dGf9Y1mdpOZ7ZuCmhZF9Tzd6H9OqZsDN7M5wL+AG9z96KTryTGzacA0d99gZgcC64Ez3P1vCdZkwP7u/i8z2wv4I7DI3R9LqqYcM/tvoAOY4O6nJV0PhAAHOtw9VYtAzGwV8Ii7rzSzvYHx7v5a0nVB+B8x8CJwvLtXugivXrVMJ/wZ/5C7v21mtwD3uvv1CdZ0NHAzMBvYCdwHnO3uzzXi/VM3Anf3h4EdSddRzN173X1D9PmbwCZgesI1ubv/K7rcK/or8f8jm9lhwKnAyqRrSTszmwDMAa4BcPedaQnvyFzg+aTDO884YD8zGweMB15KuJ4PAo+5e7+77wb+AHypUW+eugDPAjNrB2YB65Kt5N9TFU8C24G17p54TcClwA+AgaQLKeLA/Wa23swWJl1M5HCgD7gumnJaaWb7J11Unq8DNyVdBIC7vwgsBXqAXuB1d78/2arYCMwxs/ea2XjgFGBGo95cAV4lMzsAuA04z93fSLoed9/j7scChwGzo1/pEmNmpwHb3X19knWU8Sl3Pw44GTgnmq5L2jjgOOCX7j4LeAtYnGxJQTSd80Xg10nXAmBmE4HTgfcBhwL7m9k3k6zJ3TcB/wesJUyf/AXY3aj3V4BXIZpnvg1Y4+63J11PvujX7t8D/5FwKZ8CvhjNN98MfM7MVidbUuDuL0UftwN3EOYtk7YF2JL3m9OthEBPg5OBDe6+LelCIicC/3T3PnffBdwOfDLhmnD3a9z9OHefQ5j+bcj8NyjAKxY9MLwG2OTuP0+6HgAzm2xmB0Wf70f4A/5MkjW5+w/d/TB3byf8+v2guyc6SgIws/2jh89EUxSfJ/z6myh33wq8YGZHRrfmAok9GC/yDVIyfRLpAT5hZuOj/x7nEp5FJcrMpkQfZwL/SQP/maXuUGMzuwn4DDDJzLYAP3b3a5KtCggjy3nAU9GcM8CP3P3eBGuaBqyKOgXGALe4e2ra9lJmKnBH+O+eccCv3P2+ZEv6t+8Ca6Ipi38AZyZcD9F87knAfyVdS467rzOzW4ENhGmKJ0jHsvrbzOy9wC7gHHd/tVFvnLo2QhERqYymUEREMkoBLiKSUQpwEZGMUoCLiGSUAlxEJKMU4CIiGaUAFxHJqP8H2tVcQ6yarHcAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "#散点图\n", "plt.scatter(X_train , Y_train, color = 'red')\n", "#线图\n", "plt.plot(X_train , regressor.predict(X_train), 'bo-')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 测试集结果可视化" ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAajUlEQVR4nO3df5BV5X3H8fcX5IegBCkrxSBsMJSoLSjdgUYTqyVkNFp/TEYrQxLaxGxqmhZr0oolk5hkyFDbGjNOxFBIhsSNGIkUYtSGrmL8EcWF4K9ARZBFZWVXqoBABJZv/3jOZvfsD/bu3nPvuefez2tm5+5z9sf93kg+fHnueZ7H3B0REcmeAWkXICIi/aMAFxHJKAW4iEhGKcBFRDJKAS4iklEnFPPJRo8e7dXV1cV8ShGRzNuwYcNb7l7V+XpRA7y6upqGhoZiPqWISOaZWWN31zWFIiKSUQpwEZGMUoCLiGSUAlxEJKMU4CIiGaUAFxEpoLo6qK6GAQPCY11dcr+7qLcRiohUkro6qK2FgwfDuLExjAHmzMn/96sDFxEpkAUL2sO7zcGD4XoSFOAiIgXgHjru7uzcmcxzKMBFRBK2YUOY8+7J+PHJPI8CXEQkIceOwfnnQ01NGI8YAcOGxb9n2DBYuDCZ51OAi4gkoL4eBg6Ep54K44cegr17YckSmDABzMLjkiXJvIEJugtFRCQvR47ApEnt893nngvPPhvCHEJYJxXYnakDFxHpp/vug8GD28P717+GjRvbw7vQ1IGLiPTRgQNwyimh+wa49FL4+c/DNEkxqQMXEemDxYvhpJPaw/ull+CBB4of3qAOXEQkJ3v2wOjR7ePPfz68IZkmdeAiIr34xjfi4d3YmH54gzpwEZEevfZafNHN174WwrxUKMBFRLrxxS+G+e42LS3xLrwUaApFRKSDzZvDG5Jt4X3HHWFfk1ILb1AHLiIChJC+6ipYvTqMzWDfvnDHSalSBy4iFW/9+rD5VFt4r1gR9jUp5fAGdeAiUsFaW2HGjLB7IMDpp8Mrr4TVlVnQawduZpPNbFOHj31mdoOZjTKztWa2NXo8pRgFi4gk4b//G044oT28f/nLsE93VsIbcghwd/9fdz/H3c8B/hQ4CKwC5gP17j4JqI/GIiIl7fBhOO00uPjiMJ4xI3Tis2alW1d/9HUOfCawzd0bgSuA5dH15cCVSRYmIpK0FStgyBBoagrjZ56Bp58+/uELpayvZV8L3BN9PsbdmwCix1O7+wEzqzWzBjNraGlp6X+lIiL99O674a6S2bPD+KqrwpuU06cX4ckLeCx9zgFuZoOBy4H7+vIE7r7E3Wvcvaaqqqqv9YmI5OWOO+Dkk9vHmzfD/fcXafOptmPpGxvbD8msrU0sxPvSgV8CbHT33dF4t5mNBYgemxOpSEQkAS0tIaT/4R/C+ItfDBn6oQ8VsYgCH0vflwCfTfv0CcAaYG70+VxgdSIViYjk6atfhVM7TOq+9hp873spFNLT8fMJHUufU4Cb2TBgFnB/h8uLgFlmtjX62qJEKhIR6afGxtB1tx0a/M1vhq573LiUCurp+PmEjqXPaSGPux8E/qDTtT2Eu1JERFJ33XWwbFn7eM8eGDUqvXqA8DdJbW18GiXBY+kzevOMiEjw0kuh624L77vuCl136uEN4TTjAh5Lr6X0IpJJ7uEsyoceCuMhQ0LXPXx4unV1UcBj6dWBi0jmPPVUuK26LbxXroTf/a4Ew7vA1IGLSGa0tsK0afD882E8cSJs2QKDBqVbV1rUgYtIJjz4YNh8qi286+th27bKDW9QBy4iJe6998JtgG+9FcYf+Qg89lh29y9Jkv4nEJGS9eMfw9Ch7eHd0ACPP67wbqMOXERKzr598L73tY//6q/gnnuKtH9JhujvMREpKbfdFg/vl18O28AqvLtSBy4iJWH3bvjDP2wfz5sHt9+eXj1ZoA5cRFJ3003x8N61S+GdCwW4iKTm1VfD1Mitt4bxt78dVliOHZtuXVmhKRQRScVnPhPuMmnz9tswcmR69WSROnARKarnnw9dd1t4L10aum6Fd9+pAxeRonAPJ7/X14fxySeHNy5PPDHdurJMHbiIFFzb4pu28F61KtzrrfDOjzpwESmYo0dhypRwkDDA5Mnw4othTxPJnzpwESmINWvCRlNt4b1uXdg5UOGdHAW4iOSmrg6qq8NcSHV1GHfj0KHwhuQVV4TxRRfBsWPw539etEorhgJcRHpXVxfOdmxsDO9GNjaGcacQ/+EPw5GPe/eG8aZN8MgjWgZfKApwEendggXxg3khjBcsAOCdd0JIf/az4Utz5oScnzq1yHVWGAW4iPRu584er996K5xySvulbdvg7ruLU1alU4CLSO/Gj6eO2VTzKgNopZpX+R7XY36Mm24K3/KVr4Sue+LEdEutJHo/WER6VfeJu6ldfC4HCacGN1LNl7jz919vaopvRiXFkVMHbmYjzWylmW0xs81m9mEzG2Vma81sa/R4Su+/SUSyaMGDH/l9eHc0cmTouhXe6ch1CuW7wMPu/iFgKrAZmA/Uu/skoD4ai0gZ6mkKvO1uE0lHrwFuZiOAC4BlAO5+2N3fAa4Alkffthy4slBFikh6fvCD0GV3Z/z44tYicbnMgU8EWoAfmtlUYAMwDxjj7k0A7t5kZqd298NmVgvUAozXf22RzGhtPf6qyWHDYOHC4tUjXeUyhXICMA1Y7O7nAgfow3SJuy9x9xp3r6mqqupnmSJSTLfcEg/vL3wh3Bo4YUK433vCBFiyJNzvLenJpQN/HXjd3Z+JxisJAb7bzMZG3fdYoLlQRYpIcRw6FDrrjn73OxgyJHyuwC4tvXbg7v4m8JqZTY4uzQR+C6wB5kbX5gKrC1KhiBTFZz4TD+9Fi8Lcd1t4S+nJ9T7wvwfqzGwwsB34G0L4/9TMPgfsBK4uTIkiUkh79sDo0fFrra1hzyopbTkFuLtvAmq6+dLMZMsRkWKaMQPWr28f33MPXHttevVI32glpkgF2r4dzjgjfq2nWwWldOkfSSIVZvjweHivW6fwzip14CIV4tlnYfr0+DUFd7YpwEUqQOcDFV58Ec4+O51aJDmaQhEpYw88EA/vD3wgdN0K7/KgDlykDLl3vQ3wjTfgtNPSqUcKQx24SJm56654eH/iEyHQFd7lRx24SJnobvOpvXthxIh06pHCUwcuUgZuvjke3vPmha5b4V3e1IGLZNiBA3DSSfFrhw/DoEHp1CPFpQ5cJKOuuSYe3t/5Tui6Fd6VQx24SMY0N8OYMfFrx451vddbyp86cJEMmTIlHt4rV4auW+FdmdSBi2TAyy/D5Mnxa1oGL+rARUrcgAHx8H7iCYW3BOrARUrUr38N550Xv6bglo4U4CIlqPOc9pYtXadQRDSFIlJCVq2Kh/eZZ4auW+Et3VEHLlICutt86s03u94uKNKROnCRlN1xRzy8r7oqBLrCW3qjDlwkJUeOwODB8Wv793ddGi/SE3XgIin48pfj4f1P/xS6boW39IU6cJEi2r+/6w6BR4503QZWJBfqwEWK5PLL4+F9552h61Z4S3/pj45IgTU1dT0NR5tPSRJy6sDNbIeZvWBmm8ysIbo2yszWmtnW6PGUwpYqkj2TJsXDe/VqbT4lyenLFMpF7n6Ou9dE4/lAvbtPAuqjsYgAmzeHkH7llfZr7mEaRSQp+cyBXwEsjz5fDlyZfzki2WcGZ53VPn76ae1hIoWRa4A78Esz22BmtdG1Me7eBBA9ntrdD5pZrZk1mFlDS0tL/hWLlKjHH49PjQwZEoJ7xoz0apLyluubmOe7+y4zOxVYa2Zbcn0Cd18CLAGoqalRHyJlqfOc9iuvwBlnpFOLVI6cOnB33xU9NgOrgOnAbjMbCxA9NheqSJFSde+98fCeNi103QpvKYZeO3AzGw4McPf90ecfB74JrAHmAouix9WFLFSklHS3+VRLC4wenU49Uply6cDHAE+Y2XPAeuAX7v4wIbhnmdlWYFY0Fil7//7v8fCePTsEusJbiq3XDtzdtwNTu7m+B5hZiKJEStHhw+GNyY4OHIBhw9KpR0RL6UVy8KUvxcP7q18NXbfCW9KkpfQix7F3L4wcGb929CgMHJhOPSIdqQMX6cGsWfHwXro0dN0KbykV6sBFOnn9dTj99Pg1bT4lpUgduEgH48bFw/vBB7X5lJQudeAiwAsvwJQp8Wvav0RKnTpwqXhm8fDesEHhLdmgAJeK9cgj8amRkSNDcE+bll5NIn2hKRSpSJ3ntF99FaqrUylFpN/UgUtF+fGP4+F93nmh61Z4SxapA5eKcOxY1/u39+yBUaPSqUckCerApex9+9vx8P7rvw5dt8Jbsk4duJSt996DoUPj1w4d6npNJKvUgUtZuu66eFB/61uh61Z4SzlRBy5l5e23u06NtLZ2PXxBpBzoj7WUjY9+NB7ey5d3f3KOSLlQBy6Z19jY9TZAraSUSqDeRDJt9Oh4eK9dq/CWyqEOXDLpN7/puuRdwS2VRgEumdN5Gfxzz3XdSVCkEmgKRTLj4Yfj4T12bOi6Fd5SqdSBS8nr7k6SnTu7npojUmnUgUtJ+8EP4uE9c2YIdIW3iDpwKVGtrXBCpz+d77wD73tfOvWIlCJ14FJybrklHt5/+7eh61Z4i8Tl3IGb2UCgAXjD3S8zs1HAvUA1sAO4xt3fLkSRUhkOHYJhw+LX3nsPBg9Opx6RUteXDnwesLnDeD5Q7+6TgPpoLJKzurqwCGfAABg+PB7et94aum6Ft0jPcurAzWwccCmwELgxunwFcGH0+XJgHXBTsuVJuaqrg9paOHgwjNseIRy+0PlebxHpKtcO/Hbgn4FjHa6NcfcmgOjx1O5+0MxqzazBzBpaWlryKlbKx4IF8dBuM2GCwlskV70GuJldBjS7+4b+PIG7L3H3Gnevqaqq6s+vkDKzfXvYgKo7O3cWtxaRLMtlCuV84HIz+wQwFBhhZncDu81srLs3mdlYoLmQhUp5GD68+867zfjxxatFJOt67cDd/WZ3H+fu1cC1wCPu/ilgDTA3+ra5wOqCVSmZt359mBrpGN6d7zgZNgwWLixuXSJZls994IuAWWa2FZgVjUW6MIMZM9rHL70U7jBZsqR9znvChDCeMye9OkWyxryIe3DW1NR4Q0ND0Z5P0vXzn8Pll7ePJ06EbdvSq0ckq8xsg7vXdL6upfSSuO42n3rjDTjttHTqESlXWkovibrrrnh4X3ppCHSFt0jy1IFLIo4ehUGD4tf27YOTT06nHpFKoA5c8jZ/fjy8580LXbfCW6Sw1IFLvx04ACedFL92+HDXTlxECkMduPTL1VfHw/v220PXrfAWKR514NInzc0wZkz8mjafEkmHOnDJ2ZQp8fBeuTJ03QpvkXQowKVXL78cQvqFF9qvucMnP5nnL+64IXh1dRiLSM40hSLH1bm7fvJJOO+8BH5x5w3BGxvDGLSeXiRH6sClW0891TW83RMKb+h+Q/CDB8N1EcmJOnDponNwb9kCkycn/CQ9bfytDcFFcqYOvMJ1nIauqoqH91lnha478fCGnjf+1obgIjlTgFewtmnoxsYQ1G+91f61N98M274WzMKF2hBcJE8K8Ap2vHMpO9/rnbg5c7QhuEietB94hTpyBAYP7v5rZmFxjoiUhp72A1cHXoH+8R97Dm/QNLRIVugulAqyfz+MGBG/NmxY13MqNQ0tkg3qwCvEX/5lPLzvvFPnUopknTrwMtfU1PU0nI6bT82Zo8AWySp14GXsgx+Mh/eaNdp8SqScqAMvQ7/9LZx9dvxaEW82EpEiUQdeZszi4f3MMwpvkXKlAC8Tjz0WnxoZOjQE9/Tp6dUkIoXV6xSKmQ0FfgUMib5/pbt/3cxGAfcC1cAO4Bp3f7twpUpPOs9pv/IKnHFGOrWISPHk0oG/B/yFu08FzgEuNrM/A+YD9e4+CaiPxtKbBA8xWLEiHt41NaHrVniLVIZeO3APa+3fjYaDog8HrgAujK4vB9YBNyVeYTlJ6BAD95D/HbW0wOjRCdUpIpmQ0xy4mQ00s01AM7DW3Z8Bxrh7E0D0eGrhyiwTCRxi8G//Fg/vOXNCoCu8RSpPTrcRunsrcI6ZjQRWmdkf5/oEZlYL1AKMr/RNNvI4xODwYRgyJH7t4EE48cQE6hKRTOrTXSju/g5hquRiYLeZjQWIHpt7+Jkl7l7j7jVVVVV5lptx/TzE4Prr4+H9ta+FrlvhLVLZcrkLpQo44u7vmNmJwMeAfwXWAHOBRdHj6kIWWhYWLozPgcNxd4/auxdGjoxfO3oUBg4sYI0ikhm5dOBjgUfN7HngWcIc+AOE4J5lZluBWdFYjqcPhxh87GPx8F66NHTdCm8RaaMDHUrM66/D6afHr3XcfEpEKo8OdMiA006Lh/dDD2nzKRHpmTazKgHPPw9Tp8avaf8SEemNOvAi67wQ0ywe3hs3Fjm8E1wZKiLFpQ68iLpbiNlm1CjYs6cECurHylARSYc68CLqbiEmwPvfn0J4QyIrQ0UkPQrwIuppweWuXcWt4/fyWBkqIulTgBeBO1x0Uc9z26ntMNDPlaEiUhoU4AX22GPh/cF168K4834mx1mIWXgLF4YCOkq1IBHpCwV4gRw9CpMnw4UXhvGZZ8KRI7BsWU4LMYujDytDRaT0aCVmAfzXf8FVV7WPf/Ur+OhH06tHRLKtp5WYuo0wQYcOQVUVHDgQxjNnwtq1WkkpIoWhKZSELFsWpo/bwvu55+B//kfhLSKFU5kBnuDqw7ffDiF93XVh/OlPh7tNpkxJpFIRkR5VXoC3rT5sbAxJ27b6sB8hvmhRWEHZZts2+NGPEqxVROQ4Ki/AE1h9uGtX6LpvvjmMb7op/F0wcWKCdYqI9KLy3sTMc/XhDTfAd7/bPn7zTRgzJoG6RET6qPI68H6uPty6NXTdbeH9H/8Rum6Ft4ikpfICvI+rD93hmmvgj/6o/drevXDjjQWsUUQkB5UX4H1YfbhxY7hR5b77wvhHPwqBPmJEkWsWEelG5c2BQwjr4ywXP3YMLrgAnnwyjKuqwhT50KFFqk9EJAeV14H34tFHw8nvbeH9wAPQ3KzwFpHSU5kdeDeOHAmbT736ahhPnQobNoQwFxEpRerAgZUrYfDg9vB+8knYtEnhLSKlrSIDvONKejO4+upw/ZJLwvz3eeelWp6ISE4qLsA7r6Rvs2gRPPigNp8SkezoNcDN7HQze9TMNpvZS2Y2L7o+yszWmtnW6PGUglSY4MZTEJa/d3ew8OLFef1aEZGiy6UDPwp82d3PBP4M+DszOwuYD9S7+ySgPhonK8GNpyAcb/baa91/Tef4ikjW9Brg7t7k7hujz/cDm4H3A1cAy6NvWw5cmXh1CWw8BbBvH1x/fTje7IQe7rvROb4ikjV9mgM3s2rgXOAZYIy7N0EIeeDUHn6m1swazKyhpaWlb9XlufEUwC9+AWefHRZb3ngjfP/7OsdXRMpDzgFuZicBPwNucPd9uf6cuy9x9xp3r6mqqupbdf3ceArgrbfgU5+Cyy4LS9+feipsQPXZz+ocXxEpDzkFuJkNIoR3nbvfH13ebWZjo6+PBZoTr66PG09BmCpfsSKcAn/vvfD1r4c9TWbMaP+eOXNgx45wy+COHQpvEcmmXO5CMWAZsNndb+vwpTXA3OjzucDqxKvrw8ZTAG+8AVdeCbNnwwc+EIL7lltgyJDEKxMRSZ15x5uhu/sGs48AjwMvAMeiy/9CmAf/KTAe2Alc7e7/d7zfVVNT4w0NDfnW3IU7LF0KX/lKWBL/rW+Fgxe0klJEyoGZbXD3ms7Xe90Lxd2fAHpa3jIz38LytW0bfP7zYROqCy+E//xP+OAH065KRKTwMrsSs7UVbrsN/uRPwqZT3/8+1NcrvEWkcmRyN8IXX4TPfQ7Wrw93mSxeDOPGpV2ViEhxlXwH3nEl/YQJ8MlPwrRpsH07/OQnsGaNwltEKlNJd+BtK+nbFmPu3Bk+PvxhWL06nJQjIlKpSroD724lPcCuXQpvEZGSDvAEVtKLiJStkg7wPFbSi4iUvZIO8H6spBcRqRglHeB9XEkvIlJRSvouFAhhrcAWEemqpDtwERHpmQJcRCSjFOAiIhmlABcRySgFuIhIRvV6oEOiT2bWAjQW7Qn7ZzTwVtpFJKicXk85vRYor9dTTq8FSu/1THD3LhuIFDXAs8DMGro7+SKryun1lNNrgfJ6PeX0WiA7r0dTKCIiGaUAFxHJKAV4V0vSLiBh5fR6yum1QHm9nnJ6LZCR16M5cBGRjFIHLiKSUQpwEZGMUoBHzOx0M3vUzDab2UtmNi/tmvrLzIaa2Xozey56Ld9Iu6Z8mdlAM/uNmT2Qdi35MrMdZvaCmW0ys4a068mXmY00s5VmtiX6/8+H066pv8xscvTfpe1jn5ndkHZdPdEceMTMxgJj3X2jmZ0MbACudPffplxan5mZAcPd/V0zGwQ8Acxz96dTLq3fzOxGoAYY4e6XpV1PPsxsB1Dj7qW0UKTfzGw58Li7LzWzwcAwd38n7bryZWYDgTeAGe5ekgsQ1YFH3L3J3TdGn+8HNgPvT7eq/vHg3Wg4KPrI7N/UZjYOuBRYmnYtEmdmI4ALgGUA7n64HMI7MhPYVqrhDQrwbplZNXAu8Ey6lfRfNOWwCWgG1rp7Zl8LcDvwz8CxtAtJiAO/NLMNZlabdjF5mgi0AD+MpriWmtnwtItKyLXAPWkXcTwK8E7M7CTgZ8AN7r4v7Xr6y91b3f0cYBww3cz+OO2a+sPMLgOa3X1D2rUk6Hx3nwZcAvydmV2QdkF5OAGYBix293OBA8D8dEvKXzQVdDlwX9q1HI8CvINovvhnQJ273592PUmI/jm7Drg45VL663zg8mjeeAXwF2Z2d7ol5cfdd0WPzcAqYHq6FeXldeD1Dv/CW0kI9Ky7BNjo7rvTLuR4FOCR6I2/ZcBmd78t7XryYWZVZjYy+vxE4GPAlnSr6h93v9ndx7l7NeGftI+4+6dSLqvfzGx49CY50VTDx4EX062q/9z9TeA1M5scXZoJZO6N/27MpsSnTyADhxoX0fnAp4EXorljgH9x9wdTrKm/xgLLo3fRBwA/dffM335XJsYAq0K/wAnAT9z94XRLytvfA3XRtMN24G9SricvZjYMmAV8Ie1aeqPbCEVEMkpTKCIiGaUAFxHJKAW4iEhGKcBFRDJKAS4iklEKcBGRjFKAi4hk1P8DE9nwnKBxd3cAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "#散点图\n", "plt.scatter(X_test , Y_test, color = 'red')\n", "#线图\n", "plt.plot(X_test ,Y_pred, 'bo-')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[[3.2]\n [3.8]\n [1.1]\n [1.9]\n [1.5]\n [5.9]\n [7.8]] [[27]\n [35]\n [17]\n [24]\n [20]\n [62]\n [86]]\n" ] } ], "source": [ "print(X_test,Y_test)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3-final" } }, "nbformat": 4, "nbformat_minor": 2 }