{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 机器学习100天——第二天:简单线性回归\n", "## 第一步:数据预处理" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "这里导入我们需要的库,值得注意的是,这里比第一天多了一个matplotlib.pyplot,matplotlib是python上的一个2D绘图库,\n", "matplotlib下的模块pyplot是一个有命令样式的函数集合,\n", "matplotlib.pyplot是为我们对结果进行图像化作准备的。" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "导入相关数据" ] }, { "cell_type": "code", "execution_count": 90, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " Hours Scores\n0 2.5 21\n1 5.1 47\n2 3.2 27\n3 8.5 75\n4 3.5 30\n5 1.5 20\n6 9.2 88\n7 5.5 60\n8 8.3 81\n9 2.7 25\n10 7.7 85\n11 5.9 62\n12 4.5 41\n13 3.3 42\n14 1.1 17\n15 8.9 95\n16 2.5 30\n17 1.9 24\n18 6.1 67\n19 7.4 69\n20 2.7 30\n21 4.8 54\n22 3.8 35\n23 6.9 76\n24 7.8 86\n25 2.1 93\n26 2.2 93\n27 2.5 93\n Hours Scores\n15 8.9 95\n27 2.5 93\n26 2.2 93\n25 2.1 93\n6 9.2 88\n24 7.8 86\n10 7.7 85\n8 8.3 81\n23 6.9 76\n3 8.5 75\n19 7.4 69\n18 6.1 67\n11 5.9 62\n7 5.5 60\n21 4.8 54\n1 5.1 47\n13 3.3 42\n12 4.5 41\n22 3.8 35\n20 2.7 30\n4 3.5 30\n16 2.5 30\n2 3.2 27\n9 2.7 25\n17 1.9 24\n0 2.5 21\n5 1.5 20\n14 1.1 17\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ " Hours Scores\n", "0 2.5 21\n", "1 5.1 47\n", "2 3.2 27\n", "3 8.5 75\n", "4 3.5 30\n", "5 1.5 20\n", "6 9.2 88\n", "7 5.5 60\n", "8 8.3 81\n", "9 2.7 25\n", "10 7.7 85\n", "11 5.9 62\n", "12 4.5 41\n", "13 3.3 42\n", "14 1.1 17\n", "15 8.9 95\n", "16 2.5 30\n", "17 1.9 24\n", "18 6.1 67\n", "19 7.4 69\n", "20 2.7 30\n", "21 4.8 54\n", "22 3.8 35\n", "23 6.9 76\n", "24 7.8 86\n", "25 2.1 93\n", "26 2.2 93\n", "27 2.5 93" ], "text/html": "
| \n | Hours | \nScores | \n
|---|---|---|
| 0 | \n2.5 | \n21 | \n
| 1 | \n5.1 | \n47 | \n
| 2 | \n3.2 | \n27 | \n
| 3 | \n8.5 | \n75 | \n
| 4 | \n3.5 | \n30 | \n
| 5 | \n1.5 | \n20 | \n
| 6 | \n9.2 | \n88 | \n
| 7 | \n5.5 | \n60 | \n
| 8 | \n8.3 | \n81 | \n
| 9 | \n2.7 | \n25 | \n
| 10 | \n7.7 | \n85 | \n
| 11 | \n5.9 | \n62 | \n
| 12 | \n4.5 | \n41 | \n
| 13 | \n3.3 | \n42 | \n
| 14 | \n1.1 | \n17 | \n
| 15 | \n8.9 | \n95 | \n
| 16 | \n2.5 | \n30 | \n
| 17 | \n1.9 | \n24 | \n
| 18 | \n6.1 | \n67 | \n
| 19 | \n7.4 | \n69 | \n
| 20 | \n2.7 | \n30 | \n
| 21 | \n4.8 | \n54 | \n
| 22 | \n3.8 | \n35 | \n
| 23 | \n6.9 | \n76 | \n
| 24 | \n7.8 | \n86 | \n
| 25 | \n2.1 | \n93 | \n
| 26 | \n2.2 | \n93 | \n
| 27 | \n2.5 | \n93 | \n