# 简单线性回归模型

# 第一步:数据预处理 ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt dataset = pd.read_csv('studentscores.csv') X = dataset.iloc[ : , : 1 ].values Y = dataset.iloc[ : , 1 ].values from sklearn.cross_validation import train_test_split X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0) ``` # 第二步:训练集使用简单线性回归模型来训练 ```python from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor = regressor.fit(X_train, Y_train) ``` # 第三步:预测结果 ```python Y_pred = regressor.predict(X_test) ``` # 第四步:可视化 ## 训练集结果可视化 ```python plt.scatter(X_train , Y_train, color = 'red') plt.plot(X_train , regressor.predict(X_train), color ='blue') ``` ## 测试集结果可视化 ```python plt.scatter(X_test , Y_test, color = 'red') plt.plot(X_test , regressor.predict(X_test), color ='blue') ```