# Data Preprocessing import pandas as pd import numpy as np import matplotlib.pyplot as plt dataset = pd.read_csv('../datasets/studentscores.csv') X = dataset.iloc[ : , : 1 ].values Y = dataset.iloc[ : , 1 ].values from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0) # Fitting Simple Linear Regression Model to the training set from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor = regressor.fit(X_train, Y_train) # Predecting the Result Y_pred = regressor.predict(X_test) # Visualising the Training results plt.scatter(X_train , Y_train, color = 'red') plt.plot(X_train , regressor.predict(X_train), color ='blue') # Visualizing the test results plt.scatter(X_test , Y_test, color = 'red') plt.plot(X_test , regressor.predict(X_test), color ='blue') plt.show()