# K-Nearest Neighbors (K-NN)
## The DataSet | Social Network
## Importing the libraries
```python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```
## Importing the dataset
```python
dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values
```
## Splitting the dataset into the Training set and Test set
```python
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
```
## Feature Scaling
```python
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```
## Fitting K-NN to the Training set
```python
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
classifier.fit(X_train, y_train)
```
## Predicting the Test set results
```python
y_pred = classifier.predict(X_test)
```
## Making the Confusion Matrix
```python
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
```