Files
100-Days-Of-ML-Code/Code/Day 41.ipynb
2018-09-02 17:12:31 +08:00

148 lines
5.3 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 基础知识\n",
"基本的CNN结构如下 Convolution(卷积) -> Pooling(池化) -> Convolution -> Pooling -> Fully Connected Layer(全连接层) -> Output\n",
"\n",
"Convolution卷积是获取原始数据并从中创建特征映射的行为。Pooling(池化)是下采样通常以“max-pooling”的形式我们选择一个区域然后在该区域中取最大值这将成为整个区域的新值。Fully Connected Layers(全连接层)是典型的神经网络,其中所有节点都“完全连接”。卷积层不像传统的神经网络那样完全连接。\n",
"\n",
"卷积:我们将采用某个窗口,并在该窗口中查找要素,该窗口的功能现在只是新功能图中的一个像素大小的功能,但实际上我们将有多层功能图。接下来,我们将该窗口滑过并继续该过程,继续此过程,直到覆盖整个图像。\n",
"\n",
"池化:最常见的池化形式是“最大池化”,其中我们简单地获取窗口中的最大值,并且该值成为该区域的新值。\n",
"\n",
"全连接层:每个卷积和池化步骤都是隐藏层。在此之后,我们有一个完全连接的层,然后是输出层。完全连接的层是典型的神经网络(多层感知器)类型的层,与输出层相同。\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 注意\n",
"本次代码中所需的X.pickle和y.pickle为上一篇的输出路径请根据自己的情况更改\n",
"\n",
"此篇中文为译者根据原文整理得到,可能有不当之处,可以<a href = \"https://pythonprogramming.net/convolutional-neural-network-deep-learning-python-tensorflow-keras/\">点击此处查看原文</a>。"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using TensorFlow backend.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train on 17462 samples, validate on 7484 samples\n",
"Epoch 1/3\n",
"17462/17462 [==============================] - 47s 3ms/step - loss: 0.6728 - acc: 0.6019 - val_loss: 0.6317 - val_acc: 0.6463\n",
"Epoch 2/3\n",
"17462/17462 [==============================] - 41s 2ms/step - loss: 0.6164 - acc: 0.6673 - val_loss: 0.6117 - val_acc: 0.6776\n",
"Epoch 3/3\n",
"17462/17462 [==============================] - 41s 2ms/step - loss: 0.5690 - acc: 0.7129 - val_loss: 0.5860 - val_acc: 0.6963\n"
]
},
{
"data": {
"text/plain": [
"<keras.callbacks.History at 0x7f40a8322d68>"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import tensorflow as tf\n",
"from tensorflow.keras.datasets import cifar10\n",
"from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten\n",
"from tensorflow.keras.layers import Conv2D, MaxPooling2D\n",
"\n",
"import pickle\n",
"\n",
"pickle_in = open(\"../datasets/X.pickle\",\"rb\")\n",
"X = pickle.load(pickle_in)\n",
"\n",
"pickle_in = open(\"../datasets/y.pickle\",\"rb\")\n",
"y = pickle.load(pickle_in)\n",
"\n",
"X = X/255.0\n",
"\n",
"model = Sequential()\n",
"\n",
"model.add(Conv2D(256, (3, 3), input_shape=X.shape[1:]))\n",
"model.add(Activation('relu'))\n",
"model.add(MaxPooling2D(pool_size=(2, 2)))\n",
"\n",
"model.add(Conv2D(256, (3, 3)))\n",
"model.add(Activation('relu'))\n",
"model.add(MaxPooling2D(pool_size=(2, 2)))\n",
"\n",
"model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors\n",
"\n",
"model.add(Dense(64))\n",
"\n",
"model.add(Dense(1))\n",
"model.add(Activation('sigmoid'))\n",
"\n",
"model.compile(loss='binary_crossentropy',\n",
" optimizer='adam',\n",
" metrics=['accuracy'])\n",
"\n",
"model.fit(X, y, batch_size=32, epochs=3, validation_split=0.3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"在仅仅三个epoches之后我们的验证准确率为71。如果我们继续进行更多的epoches我们可能会做得更好但我们应该讨论我们如何知道我们如何做。为了解决这个问题我们可以使用TensorFlow附带的TensorBoard它可以帮助您在训练模型时可视化模型。\n",
"\n",
"我们将在下一个教程中讨论TensorBoard以及对我们模型的各种调整"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}