Files
100-Days-Of-ML-Code/Code/Day 2_Simple_Linear_Regression.ipynb
2018-11-28 10:45:48 +08:00

286 lines
24 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 机器学习100天——第二天简单线性回归\n",
"## 第一步:数据预处理"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"这里导入我们需要的库值得注意的是这里比第一天多了一个matplotlib.pyplot,matplotlib是python上的一个2D绘图库,\n",
"matplotlib下的模块pyplot是一个有命令样式的函数集合\n",
"matplotlib.pyplot是为我们对结果进行图像化作准备的。"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"导入相关数据"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Hours Scores\n",
"0 2.5 21\n",
"1 5.1 47\n",
"2 3.2 27\n",
"3 8.5 75\n",
"4 3.5 30\n",
"5 1.5 20\n",
"6 9.2 88\n",
"7 5.5 60\n",
"8 8.3 81\n",
"9 2.7 25\n",
"10 7.7 85\n",
"11 5.9 62\n",
"12 4.5 41\n",
"13 3.3 42\n",
"14 1.1 17\n",
"15 8.9 95\n",
"16 2.5 30\n",
"17 1.9 24\n",
"18 6.1 67\n",
"19 7.4 69\n",
"20 2.7 30\n",
"21 4.8 54\n",
"22 3.8 35\n",
"23 6.9 76\n",
"24 7.8 86\n"
]
}
],
"source": [
"dataset = pd.read_csv('../datasets/studentscores.csv')\n",
"print(dataset)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"这里我们需要使用pandas的iloc(区分于loc根据index来索引iloc利用行号来索引)方法来对数据进行处理,第一个参数为行号,:表示全部行,第二个参数 1表示截到第1列(也就是取第0列)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"X: [[2.5]\n",
" [5.1]\n",
" [3.2]\n",
" [8.5]\n",
" [3.5]\n",
" [1.5]\n",
" [9.2]\n",
" [5.5]\n",
" [8.3]\n",
" [2.7]\n",
" [7.7]\n",
" [5.9]\n",
" [4.5]\n",
" [3.3]\n",
" [1.1]\n",
" [8.9]\n",
" [2.5]\n",
" [1.9]\n",
" [6.1]\n",
" [7.4]\n",
" [2.7]\n",
" [4.8]\n",
" [3.8]\n",
" [6.9]\n",
" [7.8]]\n",
"Y: [21 47 27 75 30 20 88 60 81 25 85 62 41 42 17 95 30 24 67 69 30 54 35 76\n",
" 86]\n"
]
}
],
"source": [
"X = dataset.iloc[ : , : 1 ].values\n",
"Y = dataset.iloc[ : , 1 ].values\n",
"print(\"X:\",X)\n",
"print(\"Y:\",Y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"导入sklearn库的cross_validation类来对数据进行训练集、测试集划分"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"#拆分数据0.25作为测试集\n",
"X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 训练线性回归"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.linear_model import LinearRegression\n",
"#使用训练集对模型进行训练\n",
"regressor = LinearRegression()\n",
"regressor = regressor.fit(X_train, Y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 预测结果"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"Y_pred = regressor.predict(X_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 可视化"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 训练集结果可视化"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGkNJREFUeJzt3XuMXOV5x/Hv41uwHZBd24Cx8S7kQkkphGghUCpCcaBJg7ikrZRkQwiBOhdETEuaOKVSSlWTkgutkqiWXNvULUsuNaZcRBIMwWlQwNWaO5jWCfgO2GAMMUvq2vv0j/dMdmZ2Zmdm58ycd878PpK1e86OZ59g5+d3n/NezN0REZHONyHrAkREJB0KdBGRnFCgi4jkhAJdRCQnFOgiIjmhQBcRyQkFuohITijQRURyQoEuIpITk9r5zWbPnu29vb3t/JYiIh1v48aNL7v7nFqva2ug9/b2Mjg42M5vKSLS8cxsaz2vU8tFRCQnFOgiIjmhQBcRyQkFuohITijQRURyQoEuItKIgQHo7YUJE8LHgYGsK/qNtk5bFBHpaAMDsGgRDA2F661bwzVAf392dSU0QhcRqdd1142EecHQULgfAQW6iEi9tm1r7H6bKdBFROq1YEFD99vdblegi4jUa+lSmDat9N60aeF+mUK7fetWcB9pt7cy1BXoIiL16u+H5cuhpwfMwsflyys+EM2i3W7u3rp3L9PX1+fanEtEusGECWFkXs4Mhocbey8z2+jufTW/Z2NvKyIiY3njDZg+vXKYQ/U2fBoU6CIiKfn2t+Gtbx1ptRx2WOnXq7TbU6NAFxFp0osvhlbK5z8frq+4IozQV6yoq92eGq0UFRFpwMBAeLC5bVton7zznbBu3cjXt2+H+fPD5/397V1AqhG6iEidKk1FLIT5178e7hXCPAsKdBGROlWaighw7LHwhS+0v55yCnQRkTptrXKy544d7a2jGgW6iEgN+/aFB5vVtHIqYiMU6CIiYzjjDJg5c+R68uTSr7d6KmIjFOgiIhVs2hRG5Rs2jNwbHoabb25gKmKbd+fStEURkTLl7ZX16+F97wuf1z0VMYPDMDRCFxFJ3HlnaZi/5S1hKmIhzBuSwe5cGqGLSNdzD12RYlu3NvmwM4PDMDRCF5GuU9zanjGjNMwvvDAEfNMzVxo8DCMNCnQRiUcbHiKWr/Z87bWRr73xBtxxR0rfqIHDMNKiQBeROLTpiJ9qqz17ekbnb1MaOAwjLTrgQkSyU7zT1YQJcOjQ6Nf09MCWLal8u8FBOO20yl8bz8ET7VLvARd6KCoi2Sif1lcpzCG1h4hjrfSEeFZ7NkMtFxHJRrXeR7lxJG1xK37WrNFh3ubWdtso0EUkG/WMvMeRtOWt+L17R7728MPhXptb222jHrqIZKO3t/L2hRMnhmb2ggUhzBtM2mpvm2Irvu10SLSIxK3atL7Vq0Ogb9nScJj/6lfVt7ht4XqeaCjQRSQbKU/rM4Mjjqj+9Tw89KxFs1xEJDspHLr5zDPwO79Tem/atNLnrXl56FmLRugi0rHMSsN86dJ8P/SsRSN0Eek4t946OqCL53ekMPDvSBqhi0hHMSsN65/8pDTMgbYfLBELBbqIdIQ/+7PRC4Tc4Q/+oOyFbdoTJkZ1BbqZ/bmZPW1mT5nZd83sMDM7zsw2mNlmM/u+mU1pdbEi0n3efDME+YoVI/d27qwwKi/I4GCJWNQMdDObB3we6HP3k4CJwEeAG4F/cPd3AK8CV7SyUBHpPrNnl05VP/HEEOTHHDPGb8rgYIlY1NtymQRMNbNJwDTgBeBcYE3y9dXAxemXJyLdpLj1bQavvDLytQMHwhTFmjI4WCIWNQPd3XcC3wC2EYL8NWAjsM/dDyYv2wHMq/T7zWyRmQ2a2eCePXvSqVpEcqe89V1wwQXhevLkOt8og4MlYlFPy2UmcBFwHHAMMB34YIWXVuxouftyd+9z9745c+Y0U6uI5EzxiPwTn6i8+eKTTzb4phkcLBGLeuahvx943t33AJjZWuD3gBlmNikZpc8HdrWuTBHJm/Lt0Ks95BxX67tLJ6LX00PfBpxhZtPMzICFwDPAA8CfJK+5DEjrJD4R6QIt3A69a9XTQ99AePj5CPBk8nuWA18C/sLMfgHMAla2sE4RyZH//d/quyIW65LWd2rqWvrv7l8BvlJ2+zng9NQrEpFcq3UUXJPboXc1rRQVkbZ49tnRYT51aul1k9uhdz0Fuoi0fO8Ts7AoqGDevPAQ9J//uSsno7SMdlsU6Xbl000Ke59A0+m6ciVceWXpPe2K2DoaoYt0uxbtfWJWGuZ//ddj7L/SbjndjVEjdJFul/LeJ+efD+vWld6LJsihpT+RZE0jdJFul9LeJwcPhlF5cZj/9KeRhTnkejdGBbpIt0th7xOz0XutuMPZZ6dQX9pyvBujAl2k2zWx98nWraOnIr7ySoSj8mI53o1RPXQRGdd0k/IgnzgxtF2it3RpaQ8dcrMkVSN0EWnImjWjw3x4uEPCHHK9G6NG6CJSt/Ig/8xnYNmybGppSk4nwCvQRaSmj3989FTtqPvkXUqBLiJVDQ+H3nixu++GD30om3pkbAp0Eamo0q6IGpXHTQ9FRaRkJfyxx44O8127FOadQCN0kS5XvhJ+x47SryvIO4dG6CJdrtpRcAsWKMw7jQJdpMtVOwpu+/b21iHNU6CLdKnFi8c+Di4HK+G7jnroIl3GPTz8LDZlChw4MHKdk5XwXUcjdJEuMn366DB3h1WrcrkSvutohC7SBV57DWbMKL33y1/C8ceHz3O6Er7rKNBFck4LhLqHWi4iMUnxrMuHHhod5gcOKMzzTCN0kVikeNZleZC/732wfn3zJUrcNEIXiUUKZ13+7d+ODnN3hXm30AhdJBZNnnVZHuTLloX9yqV7KNBFYrFgQeVlmzVW+LztbfDcc6X31CfvTmq5iMRi6dKwoqfYGCt8hobCqLw4zJ96SmHezTRCF4lF4cHnddeFNsuCBSHMKzwQ1VREqUSBLhKTGit8nngCTjml9N7QEEyd2uK6pCMo0EU6RPmo/Ld/GzZtyqYWiZN66CKR+853Kk9FVJhLOQW6SETKF4qawdVXj3z9hhvUK5fq1HIRiUSlhaLFFORSi0boIpGodhTc0UcrzKU+CnSRSFQ7Cu6ll9pbh3QuBbpIxn7xCx0FJ+lQD10kQ2MFOegoOGlMXSN0M5thZmvM7Fkz22RmZ5rZb5nZOjPbnHyc2epiRaKQwp7lt9xSeSriLbfoKDgZP/M6nraY2WrgZ+6+wsymANOAvwL2uvvfm9kSYKa7f2ms9+nr6/PBwcE06hbJRvlUFAjD6AaStzzIr70WvvGNFGuU3DGzje7eV/N1tQLdzI4AHgeO96IXm9l/A+e4+wtmNhdY7+4njPVeCnTpeL29lZ9e9vTAli1j/tZLLoH/+I/Se5q9IvWoN9DrabkcD+wBbjazR81shZlNB45y9xcAko9HVilkkZkNmtngnj17GvifIBKhcexZfuhQGJUXh/l99ynMJX31BPok4D3AMnc/FXgDWFLvN3D35e7e5+59c+bMGWeZIpGoNuWkyn0zmFQ29cAdFi5MuS4R6gv0HcAOd9+QXK8hBPxLSauF5OPu1pQoEpE69yzfuXN0r3z3bo3KpbVqBrq7vwhsN7NCf3wh8AxwJ3BZcu8y4I6WVCgSk/7+8AB0jKkoZjB/fulvcwf9gCqtVu8sl3cDK4ApwHPA5YR/DH4ALAC2AX/q7nvHeh89FJU8u+suuPDC0nvDw7XnmovUUu9D0boWFrn7Y0ClN1MnUITRoX355bBqVTa1SPfS0n+RBhWvKzr88MoLhBTmkgUFukgDCuuKtm4Nwb1//8jX1q7VQ0/JlgJdpAHVtrjt6QkLh0SypEAXqdNLL1Xf4naMdUUibaPdFkXqUGumira4lRhohC4yhjvvHB3mdawrEsmEAl3yI4VtbYuZwUUXjVy/7W3hoWeNdUUimVHLRfKh0gnLixaFzxtM2/5+uPXW0nvFs1f6+xXgEieN0CUfKk0/GRoK9xtgVhrmX/+6piJK51CgSz40uK1teXfGrPICoS98IdUqRVpKgS750MC2tuWLg8qnIj7+uEbl0pkU6JIPdW5rC9UXB0EI8pNPbkF9Im2gQJd8qGNb24Jq3RntiiidTrNcJD/qmH4yVmhrcZB0Oo3QpStcc83YYa7FQZIHGqFL7pUH+ZIlcNJJoZe+bVsYmS9dqrnl0vkU6JIbAwOlIV1pI63yBUIieaKWi+RCramIDz6oqYiSfxqhSy7Umooo0g00Qpdc0FREEY3QJQc0FVEk0AhdOtbSpZqKKFJMI3TpSOVBfvnlsHChpiJKd9MIXTrKvHmVd0VctSqE95YtMDwcPo4Z5ikfhiESAwW6RK04d81g166Rr/3wh+OcwVJpjuOiRQp16XjmbZzT1dfX54ODg237ftLZyg8hKtbUX9ve3sqrjnp6wtBeJDJmttHd+2q9TiN0idYXv1g5zHt6mnzjBg/DEOkUCnSJUnl7pVjTudvAYRginUSBLlFZvbr2YqCmc7eBwzBEOommLUo0yoP8rLPg0UdL2y6p5G5h+ovmOErOaIQumfvABypPRXzwwboPIWpcQ3McRTqDRuiSmeFhmDix9N7atXDJJSPXdRxCJCIJBbpkolKfXLsiijRHLRdpq127Rof5jh0Kc5E0aIQubaNRuUhraYTeTTLav+SOO0aH+aFDCnORtGmE3i3K19EX9i+Blj51LA/y886De+9t2bcT6WoaoXeLSme0DQ2F+y3wiU9UnorYcJhrV0SRummE3i3atH+Je8jeYjffDJ/85DjeLKOfKkQ6Vd0jdDObaGaPmtndyfVxZrbBzDab2ffNbErrypSmtWH/ErPRYe4+zjCHtv9UIdLpGmm5LAY2FV3fCPyDu78DeBW4Is3CJGUt3L9k797R7ZXNm1N46KldEUUaUlegm9l84EPAiuTagHOBNclLVgMXt6JASUl/f0vW0ZvBrFml99zh7W9v6m0D7Yoo0pB6R+j/CHwRGE6uZwH73P1gcr0DmJdybZK2FPcveeCB0aPyAwdSnoqoXRFFGlIz0M3sAmC3u28svl3hpRX/r2xmi8xs0MwG9+zZM84yJSZmcO65I9ennBKCfPLklL9Ri36qEMmrmkfQmdlXgUuBg8BhwBHA7cAfAke7+0EzOxP4G3f/w7HeS0fQdbZrr4Wbbiq9p8VBIq2X2hF07v5ld5/v7r3AR4CfuHs/8ADwJ8nLLgPuaKJeiZxZaZh/85sKc5HYNDMP/UvA98zs74BHgZXplCQxmToVfv3r0nsKcpE4NRTo7r4eWJ98/hxwevolSQz274fDDy+99/jjcPLJ2dQjIrVp6b8ApSvszUaHubvCXCR2Wvovo1bYFxsaCm0XEYmfRuhScYU9hFmCCnORzqFA73I33BD2vKpEK+xFOosCvYuU70RrNvY+V1phL9JZ1EPvEpV2oi02bVpp20Ur7EU6j0boXaJan/yoo8IMFq2wF+l8NZf+p0lL/7NT6YDmwv3h4cpfE5E4pLb0Xzrbli3VwxzUJxfJE/XQc6w8yM1Kl+2rTy6SLxqh59Btt1U+oPnf/k19cpE80wg9Z8qD/IYb4MtfDp/39yvARfJMgZ4TV1wBq1aV3tOuiCLdRYHe4Q4dgkllf4o//zmceWY29YhIdhToHazS7BWNykW6lx6KdqAXXxwd5nv3KsxFup0CPTblG64MDJR82Qzmzh25PvroEOQzZ7b2+4pI/NRyiUmlDVcWLQJg3ZH9nH9+6cuHh8deNJTG99W0GJHOoaX/MentrbiXrVH6Z/SXfwlf+1rrvy89PWGpqYhkqt6l/xqhx2TbNj7Ht1nOZzjERAzHy7piLfn3t9rG59oQXaSjqIcekc9Nu5llXMUhJhHG5SN/PPfe28KHntU2dNFGLyIdRYEekeVvXgqMbopPnDDMeee18BsvXRo2dimmjV5EOo4CPRJvvgmHhiv/cVS7n5r+fm2ILpIDCvQMlM8QPO200QPkYhMntqGo/v7wAHR4OHxUmIt0HD0UbbNKMwSrHdJcUJhBKCIyFo3Q26zaUXBz5oSHnp/97MiIfOLEcP1P/9TeGkWkM2keeptNmFB5toqOghORanQEXYQuvbT61EPNEBSRZinQ22BwMIzAb7klXE+ZUvr1khmC2lNFRMZJgd5Chw7BqaeGWSwAs2eH/vmqVVVmCBaemG7dGobyhT1VFOoiUgf10Fvk9tvhwx8euf7xjxm1udYo2lNFRCrQXi4Z2b8/bGV78GC4PuccuP/+0EGpSXuqiEgT1HJJ0U03weGHj4T5k0/CAw/UGeagPVVEpCkK9BTs3Bn64ddeG66vuiq0wE86qcE30p4qItIEBXqTPv1pmD9/5HrXLvjOd8b5ZtpTRUSaoB76OD32WJjBUvCtb8HVV6fwxv39CnARGRcFeoOGh+H3fx8eeihcT58Ou3ePvbmWiEg7qOXSgHvuCfurFML8rrvCrJaGw1yLh0SkBTRCr8PQEMydC6+/Hq5PPx1+/vNxbmurA5lFpEVqjtDN7Fgze8DMNpnZ02a2OLn/W2a2zsw2Jx9ntr7c9lu2LLRVCmH+yCOwYUMTe5RX2m5xaCjcFxFpQj0tl4PAte5+InAGcJWZvQtYAtzv7u8A7k+uc+Oll8JEk899Llx/6lNhKmLxg9Bx0eIhEWmRmoHu7i+4+yPJ578CNgHzgIuA1cnLVgMXt6rIdlu8GI4+euR6+3ZYuTKlN9fiIRFpkYYeippZL3AqsAE4yt1fgBD6wJFpF9duzzwTRuXf+la4/trXwqi8eJ5507R4SERapO6Homb2VuA24Bp3f91s9On0VX7fImARwIJIR6HuYeOs++4L1xMmwL59YRl/6goPPq+7LrRZFiwIYa4HoiLSpLp2WzSzycDdwI/d/abk3n8D57j7C2Y2F1jv7ieM9T4x7rZ4//3w/vePXK9ZA3/8x9nVIyJSLrXdFi0MxVcCmwphnrgTuAz4++TjHeOsNRO//jUcdxy8+GK4/t3fDTNYJmkip4h0qHp66GcBlwLnmtljya8/IgT5eWa2GTgvue4IK1fC1KkjYf7ww/DEEwpzEels9cxyedDdzd1Pdvd3J7/ucfdX3H2hu78j+bi3JRWmuKry5ZfDQ88rrwzXH/1oWMr/3vemUqmISKbiXvqf4pFsS5bAnDkj188/D7feGgJeRCQP4g70FFZVbt4cQvvGG8P19deHfxt6e9MrU0QkBnF3jZtYVekOF14Id989cu/VV2HGjJRqExGJTNwj9HGuqvzZz0LLvRDmAwMh4BXmIpJncQd6g6sqDxyA44+Hs88O129/e7j3sY+1uE4RkQjEHegNHMk2MABveUt42AlhlL55M0ye3OaaRUQyEncPHWoeybZvH8ws2rj34oth7VrNXhGR7hP3CL2G668vDfP/+R+4/XaFuYh0p/hH6BU8/3zolRcsWQJf/Wp29YiIxCD6EXrxQtGeHjjzzNIwf/llhbmICEQe6OULRbdtC/uuAKxaFe7NmpVtjSIisYg60CstFIUwDf3yy9tfj4hIzKIO9GoLQrdvb28dIiKdIOpA1/GbIiL1izrQdfymiEj9og70BhaKioh0vejnoddYKCoiIomoR+giIlI/BbqISE4o0EVEckKBLiKSEwp0EZGcMHdv3zcz2wNsbeC3zAZeblE54xVjTRBnXTHWBHHWFWNNEGddMdYEra2rx93n1HpRWwO9UWY26O59WddRLMaaIM66YqwJ4qwrxpogzrpirAniqEstFxGRnFCgi4jkROyBvjzrAiqIsSaIs64Ya4I464qxJoizrhhrggjqirqHLiIi9Yt9hC4iInWKMtDNbJWZ7Tazp7KupcDMjjWzB8xsk5k9bWaLI6jpMDP7LzN7PKnp+qxrKjCziWb2qJndnXUtBWa2xcyeNLPHzGww63oKzGyGma0xs2eTv19nZlzPCcl/o8Kv183smixrKjCzP0/+rj9lZt81s8MiqGlxUs/TWf93irLlYmZnA/uBf3X3k7KuB8DM5gJz3f0RMzsc2Ahc7O7PZFiTAdPdfb+ZTQYeBBa7+8NZ1VRgZn8B9AFHuPsFWdcDIdCBPnePag6zma0GfubuK8xsCjDN3fdlXReEf5iBncB73b2RNSStqGUe4e/4u9z9TTP7AXCPu/9LhjWdBHwPOB04APwI+Ky7b86inihH6O7+n8DerOso5u4vuPsjyee/AjYB8zKuyd19f3I5OfmV+b/QZjYf+BCwIutaYmdmRwBnAysB3P1ALGGeWAj8MuswLzIJmGpmk4BpwK6M6zkReNjdh9z9IPBT4JKsioky0GNnZr3AqcCGbCv5TWvjMWA3sM7dM68J+Efgi8Bw1oWUceBeM9toZouyLiZxPLAHuDlpUa0ws+lZF1XkI8B3sy4CwN13At8AtgEvAK+5+73ZVsVTwNlmNsvMpgF/BBybVTEK9AaZ2VuB24Br3P31rOtx90Pu/m5gPnB68iNgZszsAmC3u2/Mso4qznL39wAfBK5KWntZmwS8B1jm7qcCbwBLsi0pSNo/FwL/nnUtAGY2E7gIOA44BphuZh/PsiZ33wTcCKwjtFseBw5mVY8CvQFJn/o2YMDd12ZdT7Hkx/T1wAcyLuUs4MKkX/094FwzuyXbkgJ335V83A3cTuh7Zm0HsKPoJ6s1hICPwQeBR9z9pawLSbwfeN7d97j7/wFrgd/LuCbcfaW7v8fdzya0ijPpn4MCvW7JA8iVwCZ3vynregDMbI6ZzUg+n0r4C/9sljW5+5fdfb679xJ+XP+Ju2c6igIws+nJw2ySlsb5hB+XM+XuLwLbzeyE5NZCILMH7WU+SiTtlsQ24Awzm5b8/3Eh4VlWpszsyOTjAuDDZPjfLMozRc3su8A5wGwz2wF8xd1XZlsVZwGXAk8mPWuAv3L3ezKsaS6wOpmJMAH4gbtHM00wMkcBt4ccYBJwq7v/KNuSfuNqYCBpcTwHXJ5xPST94POAT2ddS4G7bzCzNcAjhLbGo0SwOhO4zcxmAf8HXOXur2ZVSJTTFkVEpHFquYiI5IQCXUQkJxToIiI5oUAXEckJBbqISE4o0EVEckKBLiKSEwp0EZGc+H8Ad1Wk1CaNtgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#散点图\n",
"plt.scatter(X_train , Y_train, color = 'red')\n",
"#线图\n",
"plt.plot(X_train , regressor.predict(X_train), 'bo-')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 测试集结果可视化"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGuxJREFUeJzt3XuUldV9//H3V64iQbwMSCAwJBpN/KmoU2KqMS0EWzU1rtakMeNPVpZm0p9pE8uvLSpdjXSVLE2MMckyRpQoy4z3SHB5qwSxDckKcUBRBC1gGFDIMCgKMiiX+faP/Yxnnrkw5/6c85zPay3Wmb3nDOd7VD5+2efZ+zF3R0REqt9hSRcgIiLFoUAXEUkJBbqISEoo0EVEUkKBLiKSEgp0EZGUUKCLiKSEAl1EJCUU6CIiKTG4nC927LHHen19fTlfUkSk6q1cuXKHu9cN9LyyBnp9fT0tLS3lfEkRkapnZq3ZPE9LLiIiKaFAFxFJCQW6iEhKKNBFRFJCgS4ikhIKdBGREmluhvp6OOyw8NjcXNrXK+tliyIitaK5GZqaoKMjjFtbwxigsbE0r6kOXUSkBObMyYR5l46OMF8qCnQRkRLYvDm3+WJQoIuIFNHBg3DKKeDe9/cnTizdayvQRUSK5IknYPBgWLMmjIcNi39/xAiYN690r69AFxEp0Pvvw5gxcOGFYXzOOaFTX7AAJk0Cs/A4f37pPhAFXeUiIlKQ5ma47LLMuKUFzjwzfN3YWNoA70mBLiKSh927YdSozPiSS+DBB0M3nhQtuYiI5OjHP46H+SuvwEMPJRvmoA5dRCRrO3ZAXbfbTFx1Fdx6a3L19KQOXUQkC9dfHw/zLVsqK8xBgS4ickhbtoSllLlzw/j668M15hMmJFpWn7TkIiLSj6uugttuy4zb2+HYY5OrZyDq0EVEenj11dCVd4X5j38cuvJKDnNQhy4i8gH3cPnhI49k5nbvhpEjk6spF+rQRUSAlSvDueVdYd7cHAK+WsIc1KGLSI3r7ITPfAZ++9swHjs2nF3e8xyWajBgh25mJ5rZC91+7TKzq83saDNbYmbro8ejylGwiEixLFsGgwZlwvzxx+GPf6zOMIcsAt3dX3X3Ke4+BTgT6AAWAdcAS939BGBpNBYRqXj798Pxx8O0aWF86qlw4ABccEGydRUq1zX06cBGd28FvgAsjOYXAhcXszARkVJYtAiGDoWNG8N4+XJYvTp06tUu1zX0LwP3RV+PdfdtAO6+zczGFLUyEZEi2rs3HHH77rthfN558NRTyZ+/UkxZd+hmNhS4CHgolxcwsyYzazGzlvb29lzrExEp2M9+Fm4u0RXmq1fDf/5nGcK8uRnq68PlM/X1YVxCuXTo5wOr3L0tGreZ2bioOx8HbO/rh9x9PjAfoKGhoZ+bMomIFN8778Do0ZnxZZfBPfeU6cWbm6GpKXOn6NbWMIaSHZKeyxr6pWSWWwAeBWZGX88EFherKBGRQt10UzzMN24sY5gDzJmTCfMuHR1hvkSy6tDNbAQwA/h6t+kbgAfN7ApgM/DF4pcnIpKbtjY47rjMeNYs+P73Eyhk8+bc5osgq0B39w7gmB5zbxKuehERqQizZ8N3v5sZb90K48YlVMzEiWGZpa/5EtHWfxGpeps2hQ84u8L8O98J2/YTC3OAefPCJ7HdjRgR5ktEW/9FpKp99atw992Z8VtvwVGVsG+964PPOXPCMsvEiSHMS3jXaAW6iFSlNWvglFMy4/nz4WtfS66ePjU2ljTAe1Kgi0hVcYcLL4QnnwzjYcNCV95zdaMWaQ1dRKrG734X9uh0hflDD8F77ynMu6hDF5GKd/AgTJ0Kq1aF8aRJsH49DBmSbF2VRh26iFS0p5+GwYMzYb5kSbiqRWHemzp0EalI+/bBxz4Gr78exp/6VDi3/DC1of3SPxoRqTgPPhg+7OwK8xUrMuvn0j916CJSMfbsCeevHDgQxhddBL/8ZbqOuC0l/f9ORCrC7beHGzJ3hfnLL8PixQrzXKhDF5FEvfUWHNPtpKgrr4Q77kiunmqmDl1EEjNvXjzMN21SmBdCHbqIlN3WrTB+fGZ87bXhQC0pjAJdRMrq6qvhhz/MjNvawr0+pXBachGRstiwIXzA2RXmN98czmVRmBePOnQRKblLL4X778+M33kHRo1Krp60UocuIiXzwguhK+8K87vvDl25wrw01KGLSNG5w/TpsGxZGI8eDdu2wfDhydaVdurQRSQ7zc1QXx/239fXh3Effv3r8JSuMF+8GHbuVJiXgzp0ERlYczM0NUFHRxi3toYxfHBHngMH4LTTYO3aMH3SSfDSS+GkRCkPdegiMrA5czJh3qWjI8wDjz0WjrPtCvNnn4V16xTm5aZ/3CIysM2b+5x+r7WN8ceE7fsAn/0sPPOMTkVMiv6xi8jAJk6kmUup5w8cxkHq+QP/j1s5nL0fhPmqVaEzV5gnR//oRWRAzRf8nCbuoJV6nMNopZ6fchUAX/oSdHbC6acnXKRkF+hmNtrMHjazV8xsnZl92syONrMlZrY+ejyq1MWKSDLmPHEOHRzRa/7DH4YHHtARt5Ui2w79h8BT7n4ScBqwDrgGWOruJwBLo7GIpFA/S+hs21beOuTQBgx0MxsFnAssAHD3fe7+NvAFYGH0tIXAxaUqUkSSYxY2CvVl4sTy1iKHlk2H/lGgHbjLzJ43szvN7AhgrLtvA4ge+zxix8yazKzFzFra29uLVriIlNZvfnPopZQRI8J55lI5sgn0wcAZwG3ufjqwhxyWV9x9vrs3uHtDXV1dnmWKSDmZwTnnZMavvgo//zlMmhS+N2kSzJ//wZ4iqRDZBPrrwOvuviIaP0wI+DYzGwcQPW4vTYkiUi49b8j8yU+G5ZaPfzyE96ZN4YqWTZsU5pVowI1F7v5HM9tiZie6+6vAdGBt9GsmcEP0uLiklYpIybj3vn582zY47rhk6pH8ZHuVyz8AzWb2IjAF+A4hyGeY2XpgRjQWkSpz223xML/oohDwCvPqk9XWf3d/AWjo41vTi1uOiJTLwYO9z1rZtQs+9KFk6pHCaaeoSA3613+Nh/k3vxm6coV5ddPhXCI1ZO/ecLlhd/v2hZMSpfqpQxepEZdfHg/z730vdOUK8/RQhy6Scm+9BcccE5/r7NT5K2mkDl0kxc45Jx7m994bunKFeTqpQxdJodbWcNvP7vo7j0XSQx26SMrU1cXD/Fe/UpjXCnXoIimxejVMmRKfU5DXFgW6SAr0XBN//vne4S7ppyUXkSr2zDPxMD/mmNCVK8xrkzp0kSrVsyv/wx96fxAqtUUdukiVue++eJh/+tOhK1eYizp0kSrR1xG3O3b03jQktUsdukgVuPnmeJg3NoaAV5hLd+rQRSrY/v0wdGh8bs+e3gdsiYA6dJGKNWtWPMyvuy505Qpz6Y86dJEK8+67vc8l37+/980oRHpShy5SQf76r+Nh/pOfhK5cYS7Z0H8mIhWgra33PTx1xK3kSh26SMJOPTUe5o88oiNuJT/q0EUSsmEDnHBCfE6HaUkh1KGLJGDYsHiYL1+uMJfCqUMXKaPnnoOpU+NzCnIpFgW6SJn0XBNfuxY+8YlkapF00pKLSIk98UQ8zCdPDl25wlyKLasO3cw2AbuBg8ABd28ws6OBB4B6YBPwJXffWZoyRapPX4dpvfEGfPjDydQj6ZdLh/7n7j7F3Rui8TXAUnc/AVgajUUEuOuueJifd14IeIW5lFIha+hfAP4s+noh8Cwwu8B6RKpaZycMGhSfe/ttOPLIZOqR2pJth+7A02a20syaormx7r4NIHoc09cPmlmTmbWYWUt7e3vhFYtUqP/4j3iYf/3roStXmEu5ZNuhn+3uW81sDLDEzF7J9gXcfT4wH6ChoUEXaEnqvP8+DB8en3vvvXCtuUg5ZdWhu/vW6HE7sAiYCrSZ2TiA6HF7qYoUqVRNTfEwnzcvdOUKc0nCgB26mR0BHObuu6OvzwP+HXgUmAncED0uLmWhIpXk7bfhqKPicwcP9r6qRaScsvnPbyyw3MxWA78HHnf3pwhBPsPM1gMzorFI6n3uc/Ewv/vuvi9RFCm3ATt0d38NOK2P+TeB6aUoSqQSvfEGTJgQn9O2fakk6ilEslBfHw/zJ59UmEvl0VkuIoewdi2cfHJ8TkEulUodukg/zOJh/txzCnOpbAp0kR6WL48fpjV8eAjyhob+f0akEmjJRaSbnkfcrl8Pxx+fTC0iuVKHLkK4j2f3MD/ttNCVK8ylmqhDl5rW1/XjbW0wps+TiUQqmzp0qVk/+Uk8zP/mb0LAK8ylWqlDl5pz4AAMGRKf270bRo5Mph6RYlGHLjXl2mvjYT5rVujKFeaSBurQpSZ0dMARR8Tn9u3r3amLVDN16JJ6X/lKPMx/8IPQlSvMJW3UoUtqvfkmHHtsfK6zs/e15iJpoQ5dUumss+Jh/sADoStXmEuaqUOXVNm0CSZPjs/p/BWpFerQJTWOPjoe5suWKcyltqhDl6r3wgtw+unxOQW51CIFulS1nmviq1fDqacmU4tI0rTkIlXpV7+Kh/nYsaErV5hLLVOHLlWnZ1fe2goTJyZTi0glUYcuVePee+Nh/pnPhK5cYS4SqEOXitfZCYMGxefefDNc1SIiGerQpaLddFM8zGfODF25wlykN3XoUpH27YNhw+JzHR1w+OHJ1CNSDbLu0M1skJk9b2aPRePJZrbCzNab2QNmNrR0ZUot+eY342H+b/8WunKFucih5dKhfwtYB4yKxjcCP3D3+83sp8AVwG1Frk9qyO7dMGpUfO7Agd7r5yLSt6w6dDObAFwI3BmNDZgGPBw9ZSFwcSkKlPRqbob6+nAbuBEj4mF+++2hK1eYi2Qv2w79FuBfgA9F42OAt939QDR+HRhf5NokxZqboakprIsD7N2b+Z6OuBXJz4Adupl9Htju7iu7T/fx1D5PzzCzJjNrMbOW9vb2PMuUtJkzJxPm3U2apDAXyVc2Sy5nAxeZ2SbgfsJSyy3AaDPr6vAnAFv7+mF3n+/uDe7eUFdXV4SSpdr9z/+E3Z192by5vLWIpMmAge7u17r7BHevB74MPOPujcAy4JLoaTOBxSWrUlJj0CA48cT+v69dnyL5K2Rj0WxglpltIKypLyhOSZJGK1aEpZTOzszciBHx54wYAfPmlbcukTTJKdDd/Vl3/3z09WvuPtXdj3f3L7r7+6UpUaqdWbglXJdXXglXsMyfn1kznzQpjBsbk6tTpNpp67+UzOOPxz/g/PjHQ5B3Lbk0NoZbxnV2hkeFuUhhtPVfis49XFve3datMG5cMvWI1Ap16FJUCxbEw/yCC0LAK8xFSk8duhTFwYMwuMd/Te+803srv4iUjjp0KdjcufEw/8Y3QleuMBcpL3Xokrf33ut9AuL778NQnbspkgh16JKXK6+Mh/kNN4SuXGEukhx16JKTnTt73y3o4MHeV7WISPnpj6Fkbdq0eJjfc0/flyiKSDL0R1EGtGVL2CC0bFlmzh0uu6zA37j7gej19WEsInlToMshTZgQPzDr6adDmBes60D01tbwG7a2hrFCXSRvCnTp05o1oSt/443MnDvMmFGkF+jrQPSOjjAvInlRoEsvZnDKKZnxypVF6sq76+/gcx2ILpI3BXqN676Mfdxx8cO0Ro0KQX7GGSV44f4OPteB6CJ5U6DXsJ7L2G1tme+99lrYul8y8+bpQHSRIlOg17BD3ddz8uQSv3hjow5EFyky86IvjvavoaHBW1payvZ60r9DXT/e885CIpIsM1vp7g0DPU8deg360Y8OvRlIy9gi1Ulb/2vIgQMwZEh87vDDYe/ezFjL2CLVSx16jZg9Ox7ms2eHZZc77tAytkhaqENPuT17YOTI+Nz+/ZnzyxsbFeAiaaEOPcX+9m/jYf6jH4WuvOedhUQkHfRHO4Xa22HMmPhcZ2d805CIpI869JT5kz+Jh/lDD4WuXGEukn7q0FPitdfgYx+Lz5Vxi4GIVIABO3QzG25mvzez1Wb2spnNjeYnm9kKM1tvZg+YmW4+lpBRo+Jh/l//pTAXqUXZLLm8D0xz99OAKcBfmtlZwI3AD9z9BGAncEXpykyRIt7UYdWqsJSye3dmzh3OPbfgKkWkCg0Y6B68Gw2HRL8cmAY8HM0vBC4uSYVpUsSbOpjBmWdmxmvWqCsXqXVZfShqZoPM7AVgO7AE2Ai87e4Hoqe8DowvTYkpUoSbOjz9dPwDzo98JAT5yScXqUYRqVpZfSjq7geBKWY2GlgEfKKvp/X1s2bWBDQBTKz1Q0IKvKlDzytVtmwJt4gTEYEcL1t097eBZ4GzgNFm1vU/hAnA1n5+Zr67N7h7Q11dXSG1Vr88b+pwzz3xMJ82LXTlCnMR6S6bq1zqos4cMzsc+BywDlgGXBI9bSawuFRFpkaON3Xo2gx0+eWZuZ07YenSEtYoIlUrmw59HLDMzF4EngOWuPtjwGxglpltAI4BFpSuzJTI4aYON94IgwZlxldeGbry0aPLWK+IVBXd4KLC7NsHw4bF5/buheHDk6lHRJKnG1xUob//+3iYz50bunKFuYhkQ1v/K8CuXXDkkfG5AwfiSy4iIgNRh15mPTeKnnZaPMzvvDN05WUL8yLuXBWRZKlDL6OujaJde4taW+PfL/sRt30V1NQUvtZdL0Sqjjr0MuproyhAXV1CR9wWYeeqiFQOBXoZ9bchdMeO8tbxgQJ3ropIZVGgl8n11/d/eFZiJyLkuXNVRCqTAr3EtmwJSylz54bxkCHx7x9io2jp5bhzVUQqmwK9hK66Kt7s7tgBd92V1UbR8shh56qIVD7tFC2BV1+Fk07KjG+9NYS7iEg+st0pqssWi8gdLrkEHnkkjM3CpqGRI5OtS0Rqg5ZcimTlyrA3pyvM7703XFeuMBeRcqnNQC/i7sjOTjj7bGiI/jI0bhy89x5cemlRKhURyVrtBXoR7+u5bFnYov/b34bxE0/A1q29T0sUESmH2gv0IuyO3L8fjj8+3DkIYMqUcJjW+ecXsU4RkRzVXqAXuDty0SIYOhQ2bgzj3/wGnn9eJyOKSPJq7yqXiRN7n4rVNX8Ie/fCmDHw7rth/Bd/AU8+mcD5KyIi/ai9Dj2P3ZE/+1l4SleYv/giPPWUwlxEKkvtBXoOuyPfeSc85Yorwvjyy8PnqKecUuaaRUSyUHtLLhDCe4Dt7TfdBP/8z5nxxo3w0Y+WuC4RkQLUZqAfQlsbHHdcZvxP/wTf+15y9YiIZKv2llwOYfbseJhv26YwF5HqoUAHNm0Ka+Xf/W4Y33hjWCvvHu4iIpWuJpdcmpvDPqLNm8PVK3v2ZL63cyeMHp1cbSIi+aq5Dr3nzv+uML/yyjBWmItItRow0M3sI2a2zMzWmdnLZvataP5oM1tiZuujx6NKVmURD9O67rq+b9S8ZEnev6WISEXIpkM/APx/d/8EcBbwDTP7JHANsNTdTwCWRuPiK+JhWlu26L7IIpJeAwa6u29z91XR17uBdcB44AvAwuhpC4GLS1JhEQ7T6uyE22+Hk0/uf3en7ossItUupzV0M6sHTgdWAGPdfRuE0AfG9PMzTWbWYmYt7e3tuVdYYEu9YQNMnw5/93cwdSp8//u6L7KIpFPWgW5mI4FfAFe7+65sf87d57t7g7s31NXV5V5hf63zAC31wYMhvE89FVatgjvuCOvk//iPui+yiKRTVoFuZkMIYd7s7tFN1mgzs3HR98cB20tSYR6Haa1ZA3/6p2GX54wZsHZtuIqla7mlsTFce97ZGR4V5iKSBtlc5WLAAmCdu9/c7VuPAjOjr2cCi4tfHjkdprVvH8ydC2ecAa+9BvfdB7/8JYwfX5LKREQqirn7oZ9gdg7wa+AloDOavo6wjv4gMBHYDHzR3d861O/V0NDgLS0thdbcp+eeC6civvQSfOUrcMstkM8Kj4hIpTGzle7eMNDzBtwp6u7Lgf5O/p6ea2HFtncvfPvbYb183Dh49FH4q79KuioRkfKr6q3///3foSvfsAG+9rVwkNaRRyZdlYhIMqpy6/+uXXDVVfDZz4YPNpcuDcvqCnMRqWVVEejdd/6PHQuTJ8NPfxouQXzxRZg2LekKRUSSV/FLLl07/7s2i27fHi52+fa3wy8REQkqvkPva+e/O9x1VzL1iIhUqooPdB2mJSKSnYoP9Dx3/ouI1JyKD/Q8dv6LiNSkig/0HHb+i4jUtIq/ygVCeCvARUQOreI7dBERyY4CXUQkJRToIiIpoUAXEUkJBbqISEoMeIOLor6YWTvQWrYXzM+xwI6kiyiiNL2fNL0XSNf70XsprUnuPuAte8oa6NXAzFqyuTNItUjT+0nTe4F0vR+9l8qgJRcRkZRQoIuIpIQCvbf5SRdQZGl6P2l6L5Cu96P3UgG0hi4ikhLq0EVEUkKBHjGzj5jZMjNbZ2Yvm9m3kq4pX2Y23Mx+b2aro/cyN+maCmVmg8zseTN7LOlaCmVmm8zsJTN7wcxakq6nUGY22sweNrNXoj8/n066pnyY2YnRv5OuX7vM7Oqk68qFllwiZjYOGOfuq8zsQ8BK4GJ3X5twaTkzMwOOcPd3zWwIsBz4lrv/LuHS8mZms4AGYJS7fz7pegphZpuABnevtGud82JmC4Ffu/udZjYUGOHubyddVyHMbBDwBvApd6/0vTMfUIcecfdt7r4q+no3sA4Yn2xV+fHg3Wg4JPpVtf/nNrMJwIXAnUnXInFmNgo4F1gA4O77qj3MI9OBjdUU5qBA75OZ1QOnAyuSrSR/0RLFC8B2YIm7V+17AW4B/gXoTLqQInHgaTNbaWZNSRdToI8C7cBd0ZLYnWZ2RNJFFcGXgfuSLiJXCvQezGwk8AvganfflXQ9+XL3g+4+BZgATDWz/5N0Tfkws88D2919ZdK1FNHZ7n4GcD7wDTM7N+mCCjAYOAO4zd1PB/YA1yRbUmGiZaOLgIeSriVXCvRuovXmXwDN7v5I0vUUQ/TX32eBv0y4lHydDVwUrTvfD0wzs58nW1Jh3H1r9LgdWARMTbaigrwOvN7tb4APEwK+mp0PrHL3tqQLyZUCPRJ9kLgAWOfuNyddTyHMrM7MRkdfHw58Dngl2ary4+7XuvsEd68n/DX4GXe/LOGy8mZmR0QfuhMtTZwHrEm2qvy5+x+BLWZ2YjQ1Hai6Cwl6uJQqXG6BKrmnaJmcDfxf4KVo7RngOnd/IsGa8jUOWBh9Un8Y8KC7V/3lfikxFlgU+gcGA/e6+1PJllSwfwCao6WK14CvJlxP3sxsBDAD+HrSteRDly2KiKSEllxERFJCgS4ikhIKdBGRlFCgi4ikhAJdRCQlFOgiIimhQBcRSQkFuohISvwvXoX2unAFLdIAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#散点图\n",
"plt.scatter(X_test , Y_test, color = 'red')\n",
"#线图\n",
"plt.plot(X_test ,Y_pred, 'bo-')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}