Files
100-Days-Of-ML-Code/Code/Day 3_Multiple_Linear_Regression.py
2019-05-07 16:10:45 +08:00

35 lines
1.0 KiB
Python

# Importing the libraries
import pandas as pd
import numpy as np
# Importing the dataset
dataset = pd.read_csv('../datasets/50_Startups.csv')
X = dataset.iloc[ : , :-1].values
Y = dataset.iloc[ : , 4 ].values
# Encoding Categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder = LabelEncoder()
X[: , 3] = labelencoder.fit_transform(X[ : , 3])
onehotencoder = OneHotEncoder(categorical_features = [3])
X = onehotencoder.fit_transform(X).toarray()
# Avoiding Dummy Variable Trap
X = X[: , 1:]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)
# Fitting Multiple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, Y_train)
# Predicting the Test set results
y_pred = regressor.predict(X_test)
# regression evaluation
from sklearn.metrics import r2_score
print(r2_score(Y_test, y_pred))