Update elo to support multiplayer

This commit is contained in:
atomiks
2018-01-04 14:58:29 +11:00
committed by GitHub
parent 31e2adf310
commit 3d3e70680d

View File

@ -1,24 +1,65 @@
### elo
Computes the new ratings between two opponents using the [Elo rating system](https://en.wikipedia.org/wiki/Elo_rating_system). It takes an array
of two pre-ratings and returns an array containing two post-ratings.
The winner's rating is the first element of the array.
Computes the new ratings between two or more opponents using the [Elo rating system](https://en.wikipedia.org/wiki/Elo_rating_system). It takes an array
of pre-ratings and returns an array containing post-ratings.
The array should be ordered from best performer to worst performer (winner -> loser).
Use the exponent `**` operator and math operators to compute the expected score (chance of winning)
of each opponent and compute the new rating for each. Omit the second argument to use the default
K-factor of 32, or supply a custom K-factor value.
of each opponent and compute the new rating for each. Loop through the ratings, using each permutation to compute the post-Elo rating for each player in a pairwise fashion. Omit the second argument to use the default K-factor of 32, or supply a custom K-factor value. For details on the third argument, see the last example.
```js
const elo = ([a, b], kFactor = 32) => {
const elo = ([...ratings], kFactor = 32, selfRating) => {
const [a, b] = ratings;
const expectedScore = (self, opponent) => 1 / (1 + 10 ** ((opponent - self) / 400));
const newRating = (rating, i) => rating + kFactor * (i - expectedScore(i ? a : b, i ? b : a));
return [newRating(a, 1), newRating(b, 0)];
const newRating = (rating, i) =>
(selfRating || rating) + kFactor * (i - expectedScore(i ? a : b, i ? b : a));
if (ratings.length === 2) {
return [newRating(a, 1), newRating(b, 0)];
} else {
for (let i = 0; i < ratings.length; i++) {
let j = i;
while (j < ratings.length - 1) {
[ratings[i], ratings[j + 1]] = elo([ratings[i], ratings[j + 1]], kFactor);
j++;
}
}
}
return ratings;
};
```
```js
// Standard 1v1s
elo([1200, 1200]); // [1216, 1184]
elo([1000, 2000]); // [1031.8991261061358, 1968.1008738938642]
elo([1500, 1000]); // [1501.7036868864648, 998.2963131135352]
elo([1200, 1200], 64); // [1232, 1168]
// 4 player FFA, all same rank
elo([1200, 1200, 1200, 1200]).map(Math.round); // [1246, 1215, 1185, 1154]
// For teams, each rating can adjusted based on own team's average rating vs.
// average rating of opposing team, with the score being added to their
// own individual rating
// 2v2 teams
// Ratings: [1324, 1275] and [1300, 1318]
// Calculate the average ratings of each team and use that as
// the basis of the "expected score" calculation. Supply the individual
// rating as the third argument to compute own Elo rating.
const ratings = [1324, 1275, 1300, 1318];
const averages = [(1324 + 1275) / 2, (1300 + 1318) / 2];
const results = ratings
.map(
(rating, index) =>
elo(
[index > 1 ? averages[0] : averages[1], index > 1 ? averages[0] : averages[1]],
32,
rating
)[index > 1 ? 1 : 0]
)
.map(Math.round); // [1340, 1291, 1284, 1302]
// Individual rank in the match out of each player is also possible to take into account
// Try out 50/50 balance between win/loss and individual performance
```