WIP - add extractor, generate snippet_data
This commit is contained in:
254
node_modules/fbjs/lib/PrefixIntervalTree.js
generated
vendored
Normal file
254
node_modules/fbjs/lib/PrefixIntervalTree.js
generated
vendored
Normal file
@ -0,0 +1,254 @@
|
||||
/**
|
||||
* Copyright (c) 2013-present, Facebook, Inc.
|
||||
*
|
||||
* This source code is licensed under the MIT license found in the
|
||||
* LICENSE file in the root directory of this source tree.
|
||||
*
|
||||
*
|
||||
* @typechecks
|
||||
*/
|
||||
'use strict';
|
||||
|
||||
function _defineProperty(obj, key, value) { if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; }
|
||||
|
||||
var invariant = require("./invariant");
|
||||
|
||||
var parent = function parent(node) {
|
||||
return Math.floor(node / 2);
|
||||
};
|
||||
|
||||
var Int32Array = global.Int32Array || function (size) {
|
||||
var xs = [];
|
||||
|
||||
for (var i = size - 1; i >= 0; --i) {
|
||||
xs[i] = 0;
|
||||
}
|
||||
|
||||
return xs;
|
||||
};
|
||||
/**
|
||||
* Computes the next power of 2 after or equal to x.
|
||||
*/
|
||||
|
||||
|
||||
function ceilLog2(x) {
|
||||
var y = 1;
|
||||
|
||||
while (y < x) {
|
||||
y *= 2;
|
||||
}
|
||||
|
||||
return y;
|
||||
}
|
||||
/**
|
||||
* A prefix interval tree stores an numeric array and the partial sums of that
|
||||
* array. It is optimized for updating the values of the array without
|
||||
* recomputing all of the partial sums.
|
||||
*
|
||||
* - O(ln n) update
|
||||
* - O(1) lookup
|
||||
* - O(ln n) compute a partial sum
|
||||
* - O(n) space
|
||||
*
|
||||
* Note that the sequence of partial sums is one longer than the array, so that
|
||||
* the first partial sum is always 0, and the last partial sum is the sum of the
|
||||
* entire array.
|
||||
*/
|
||||
|
||||
|
||||
var PrefixIntervalTree =
|
||||
/*#__PURE__*/
|
||||
function () {
|
||||
/**
|
||||
* Number of elements in the array
|
||||
*/
|
||||
|
||||
/**
|
||||
* Half the size of the heap. It is also the number of non-leaf nodes, and the
|
||||
* index of the first element in the heap. Always a power of 2.
|
||||
*/
|
||||
|
||||
/**
|
||||
* Binary heap
|
||||
*/
|
||||
function PrefixIntervalTree(xs) {
|
||||
_defineProperty(this, "_size", void 0);
|
||||
|
||||
_defineProperty(this, "_half", void 0);
|
||||
|
||||
_defineProperty(this, "_heap", void 0);
|
||||
|
||||
this._size = xs.length;
|
||||
this._half = ceilLog2(this._size);
|
||||
this._heap = new Int32Array(2 * this._half);
|
||||
var i;
|
||||
|
||||
for (i = 0; i < this._size; ++i) {
|
||||
this._heap[this._half + i] = xs[i];
|
||||
}
|
||||
|
||||
for (i = this._half - 1; i > 0; --i) {
|
||||
this._heap[i] = this._heap[2 * i] + this._heap[2 * i + 1];
|
||||
}
|
||||
}
|
||||
|
||||
PrefixIntervalTree.uniform = function uniform(size, initialValue) {
|
||||
var xs = [];
|
||||
|
||||
for (var _i = size - 1; _i >= 0; --_i) {
|
||||
xs[_i] = initialValue;
|
||||
}
|
||||
|
||||
return new PrefixIntervalTree(xs);
|
||||
};
|
||||
|
||||
PrefixIntervalTree.empty = function empty(size) {
|
||||
return PrefixIntervalTree.uniform(size, 0);
|
||||
};
|
||||
|
||||
var _proto = PrefixIntervalTree.prototype;
|
||||
|
||||
_proto.set = function set(index, value) {
|
||||
!(0 <= index && index < this._size) ? process.env.NODE_ENV !== "production" ? invariant(false, 'Index out of range %s', index) : invariant(false) : void 0;
|
||||
var node = this._half + index;
|
||||
this._heap[node] = value;
|
||||
node = parent(node);
|
||||
|
||||
for (; node !== 0; node = parent(node)) {
|
||||
this._heap[node] = this._heap[2 * node] + this._heap[2 * node + 1];
|
||||
}
|
||||
};
|
||||
|
||||
_proto.get = function get(index) {
|
||||
!(0 <= index && index < this._size) ? process.env.NODE_ENV !== "production" ? invariant(false, 'Index out of range %s', index) : invariant(false) : void 0;
|
||||
var node = this._half + index;
|
||||
return this._heap[node];
|
||||
};
|
||||
|
||||
_proto.getSize = function getSize() {
|
||||
return this._size;
|
||||
};
|
||||
/**
|
||||
* Returns the sum get(0) + get(1) + ... + get(end - 1).
|
||||
*/
|
||||
|
||||
|
||||
_proto.sumUntil = function sumUntil(end) {
|
||||
!(0 <= end && end < this._size + 1) ? process.env.NODE_ENV !== "production" ? invariant(false, 'Index out of range %s', end) : invariant(false) : void 0;
|
||||
|
||||
if (end === 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
var node = this._half + end - 1;
|
||||
var sum = this._heap[node];
|
||||
|
||||
for (; node !== 1; node = parent(node)) {
|
||||
if (node % 2 === 1) {
|
||||
sum += this._heap[node - 1];
|
||||
}
|
||||
}
|
||||
|
||||
return sum;
|
||||
};
|
||||
/**
|
||||
* Returns the sum get(0) + get(1) + ... + get(inclusiveEnd).
|
||||
*/
|
||||
|
||||
|
||||
_proto.sumTo = function sumTo(inclusiveEnd) {
|
||||
!(0 <= inclusiveEnd && inclusiveEnd < this._size) ? process.env.NODE_ENV !== "production" ? invariant(false, 'Index out of range %s', inclusiveEnd) : invariant(false) : void 0;
|
||||
return this.sumUntil(inclusiveEnd + 1);
|
||||
};
|
||||
/**
|
||||
* Returns the sum get(begin) + get(begin + 1) + ... + get(end - 1).
|
||||
*/
|
||||
|
||||
|
||||
_proto.sum = function sum(begin, end) {
|
||||
!(begin <= end) ? process.env.NODE_ENV !== "production" ? invariant(false, 'Begin must precede end') : invariant(false) : void 0;
|
||||
return this.sumUntil(end) - this.sumUntil(begin);
|
||||
};
|
||||
/**
|
||||
* Returns the smallest i such that 0 <= i <= size and sumUntil(i) <= t, or
|
||||
* -1 if no such i exists.
|
||||
*/
|
||||
|
||||
|
||||
_proto.greatestLowerBound = function greatestLowerBound(t) {
|
||||
if (t < 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
var node = 1;
|
||||
|
||||
if (this._heap[node] <= t) {
|
||||
return this._size;
|
||||
}
|
||||
|
||||
while (node < this._half) {
|
||||
var leftSum = this._heap[2 * node];
|
||||
|
||||
if (t < leftSum) {
|
||||
node = 2 * node;
|
||||
} else {
|
||||
node = 2 * node + 1;
|
||||
t -= leftSum;
|
||||
}
|
||||
}
|
||||
|
||||
return node - this._half;
|
||||
};
|
||||
/**
|
||||
* Returns the smallest i such that 0 <= i <= size and sumUntil(i) < t, or
|
||||
* -1 if no such i exists.
|
||||
*/
|
||||
|
||||
|
||||
_proto.greatestStrictLowerBound = function greatestStrictLowerBound(t) {
|
||||
if (t <= 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
var node = 1;
|
||||
|
||||
if (this._heap[node] < t) {
|
||||
return this._size;
|
||||
}
|
||||
|
||||
while (node < this._half) {
|
||||
var leftSum = this._heap[2 * node];
|
||||
|
||||
if (t <= leftSum) {
|
||||
node = 2 * node;
|
||||
} else {
|
||||
node = 2 * node + 1;
|
||||
t -= leftSum;
|
||||
}
|
||||
}
|
||||
|
||||
return node - this._half;
|
||||
};
|
||||
/**
|
||||
* Returns the smallest i such that 0 <= i <= size and t <= sumUntil(i), or
|
||||
* size + 1 if no such i exists.
|
||||
*/
|
||||
|
||||
|
||||
_proto.leastUpperBound = function leastUpperBound(t) {
|
||||
return this.greatestStrictLowerBound(t) + 1;
|
||||
};
|
||||
/**
|
||||
* Returns the smallest i such that 0 <= i <= size and t < sumUntil(i), or
|
||||
* size + 1 if no such i exists.
|
||||
*/
|
||||
|
||||
|
||||
_proto.leastStrictUpperBound = function leastStrictUpperBound(t) {
|
||||
return this.greatestLowerBound(t) + 1;
|
||||
};
|
||||
|
||||
return PrefixIntervalTree;
|
||||
}();
|
||||
|
||||
module.exports = PrefixIntervalTree;
|
||||
Reference in New Issue
Block a user