--- title: kNearestNeighbors tags: algorithm,array,advanced --- Classifies a data point relative to a labelled data set, using the [k-nearest neighbors](https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm) algorithm. - Use `Array.prototype.map()` to map the `data` to objects containing the euclidean distance of each element from `point`, calculated using `Math.hypot()`, `Object.keys()` and its `label`. - Use `Array.prototype.sort()` and `Array.prototype.slice()` to get the `k` nearest neighbors of `point`. - Use `Array.prototype.reduce()` in combination with `Object.keys()` and `Array.prototype.indexOf()` to find the most frequent `label` among them. ```js const kNearestNeighbors = (data, labels, point, k = 3) => { const kNearest = data .map((el, i) => ({ dist: Math.hypot(...Object.keys(el).map(key => point[key] - el[key])), label: labels[i] })) .sort((a, b) => a.dist - b.dist) .slice(0, k); return kNearest.reduce( (acc, { label }, i) => { acc.classCounts[label] = Object.keys(acc.classCounts).indexOf(label) !== -1 ? acc.classCounts[label] + 1 : 1; if (acc.classCounts[label] > acc.topClassCount) { acc.topClassCount = acc.classCounts[label]; acc.topClass = label; } return acc; }, { classCounts: {}, topClass: kNearest[0].label, topClassCount: 0 } ).topClass; }; ``` ```js const data = [[0, 0], [0, 1], [1, 3], [2, 0]]; const labels = [0, 1, 1, 0]; kNearestNeighbors(data, labels, [1, 2], 2); // 1 kNearestNeighbors(data, labels, [1, 0], 2); // 0 ```