--- title: kMeans tags: algorithm,array,advanced --- Groups the given data into `k` clusters, using the [k-means clustering](https://en.wikipedia.org/wiki/K-means_clustering) algorithm. - Use `Array.from()` and `Array.prototype.slice()` to initialize appropriate variables for the cluster `centroids`, `distances` and `classes`. - Use a `while` loop to repeat the assignment and update steps as long as there are changes in the previous iteration, as indicated by `itr`. - Calculate the euclidean distance between each data point and centroid using `Math.hypot()`, `Object.keys()` and `Array.prototype.map()`. - Use `Array.prototype.indexOf()` and `Math.min()` to find the closest centroid. - Use `Array.from()` and `Array.prototype.reduce()`, as well as `parseFloat()` and `Number.prototype.toFixed()` to calculate the new centroids. ```js const kMeans = (data, k = 1) => { const centroids = data.slice(0, k); const distances = Array.from({ length: data.length }, () => Array.from({ length: k }, () => 0) ); const classes = Array.from({ length: data.length }, () => -1); let itr = true; while (itr) { itr = false; for (let d in data) { for (let c = 0; c < k; c++) { distances[d][c] = Math.hypot( ...Object.keys(data[0]).map(key => data[d][key] - centroids[c][key]) ); } const m = distances[d].indexOf(Math.min(...distances[d])); if (classes[d] !== m) itr = true; classes[d] = m; } for (let c = 0; c < k; c++) { centroids[c] = Array.from({ length: data[0].length }, () => 0); const size = data.reduce((acc, _, d) => { if (classes[d] === c) { acc++; for (let i in data[0]) centroids[c][i] += data[d][i]; } return acc; }, 0); for (let i in data[0]) { centroids[c][i] = parseFloat(Number(centroids[c][i] / size).toFixed(2)); } } } return classes; }; ``` ```js kMeans([[0, 0], [0, 1], [1, 3], [2, 0]], 2); // [0, 1, 1, 0] ```