[MNT] Fix infer scripts

This commit is contained in:
songpx
2023-06-06 21:00:30 +08:00
parent 94b70a363a
commit 6bd5919af1
2 changed files with 72 additions and 47 deletions

113
infer.py
View File

@ -12,43 +12,53 @@ if torch.cuda.is_available():
device = "cuda" device = "cuda"
def main( class Infer():
load_8bit: bool = False, def __init__(
base_model: str = "", self,
lora_weights: str = "", load_8bit: bool = False,
infer_data_path: str = "", base_model: str = "",
prompt_template: str = "", # The prompt template to use, will default to alpaca. lora_weights: str = "",
): prompt_template: str = "", # The prompt template to use, will default to alpaca.
prompter = Prompter(prompt_template) ):
tokenizer = LlamaTokenizer.from_pretrained(base_model) prompter = Prompter(prompt_template)
model = LlamaForCausalLM.from_pretrained( tokenizer = LlamaTokenizer.from_pretrained(base_model)
base_model, model = LlamaForCausalLM.from_pretrained(
load_in_8bit=load_8bit, base_model,
torch_dtype=torch.float16, load_in_8bit=load_8bit,
device_map="auto",
)
try:
print(f"Using lora {lora_weights}")
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16, torch_dtype=torch.float16,
device_map="auto",
) )
except:
print("*"*50, "\n Attention! No Lora Weights \n", "*"*50)
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not load_8bit:
model.half() # seems to fix bugs for some users.
model.eval() try:
print(f"Using lora {lora_weights}")
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
except:
print("*"*50, "\n Attention! No Lora Weights \n", "*"*50)
if torch.__version__ >= "2" and sys.platform != "win32": # unwind broken decapoda-research config
model = torch.compile(model) model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not load_8bit:
model.half() # seems to fix bugs for some users.
def evaluate( model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
self.base_model = base_model
self.lora_weights = lora_weights
self.model = model
self.prompter = prompter
self.tokenizer = tokenizer
def generate_output(
self,
instruction, instruction,
input=None, input=None,
temperature=0.1, temperature=0.1,
@ -58,8 +68,8 @@ def main(
max_new_tokens=256, max_new_tokens=256,
**kwargs, **kwargs,
): ):
prompt = prompter.generate_prompt(instruction, input) prompt = self.prompter.generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt") inputs = self.tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device) input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig( generation_config = GenerationConfig(
temperature=temperature, temperature=temperature,
@ -70,7 +80,7 @@ def main(
**kwargs, **kwargs,
) )
with torch.no_grad(): with torch.no_grad():
generation_output = model.generate( generation_output = self.model.generate(
input_ids=input_ids, input_ids=input_ids,
generation_config=generation_config, generation_config=generation_config,
return_dict_in_generate=True, return_dict_in_generate=True,
@ -78,32 +88,47 @@ def main(
max_new_tokens=max_new_tokens, max_new_tokens=max_new_tokens,
) )
s = generation_output.sequences[0] s = generation_output.sequences[0]
output = tokenizer.decode(s) output = self.tokenizer.decode(s)
return prompter.get_response(output) return self.prompter.get_response(output)
def infer_from_file(): def infer_from_file(self, infer_data_path):
with open(infer_data_path) as f: with open(infer_data_path) as f:
for line in f: for line in f:
data = json.loads(line) data = json.loads(line)
instruction = data["instruction"] instruction = data["instruction"]
output = data["output"] output = data["output"]
print('=' * 100) print('=' * 100)
print(f"Base Model: {base_model} Lora Weights: {lora_weights}") print(f"Base Model: {self.base_model} Lora Weights: {self.lora_weights}")
print("Instruction:\n", instruction) print("Instruction:\n", instruction)
model_output = evaluate(instruction) model_output = self.generate_output(instruction)
print("Model Output:\n", model_output) print("Model Output:\n", model_output)
print("Ground Truth:\n", output) print("Ground Truth:\n", output)
print('=' * 100) print('=' * 100)
def main(
load_8bit: bool = False,
base_model: str = "",
lora_weights: str = "",
prompt_template: str = "", # The prompt template to use, will default to alpaca.
infer_data_path: str = "",
):
infer = Infer(
load_8bit=load_8bit,
base_model=base_model,
lora_weights=lora_weights,
prompt_template=prompt_template
)
try: try:
infer_from_file() infer.infer_from_file(infer_data_path)
except: except Exception as e:
print("Read infer_data_path Failed! Now Interactive Mode: ") print(e, "Read infer_data_path Failed! Now Interactive Mode: ")
while True: while True:
print('=' * 100) print('=' * 100)
instruction = input("请输入您的问题: ") instruction = input("请输入您的问题: ")
print("LaWGPT:") print("LaWGPT:")
print(evaluate(instruction)) print(infer.generate_output(instruction))
print('=' * 100) print('=' * 100)

View File

@ -3,5 +3,5 @@ python infer.py \
--load_8bit True \ --load_8bit True \
--base_model 'minlik/chinese-llama-7b-merged' \ --base_model 'minlik/chinese-llama-7b-merged' \
--lora_weights 'entity303/lawgpt-lora-7b' \ --lora_weights 'entity303/lawgpt-lora-7b' \
--infer_data_path './resources/example_infer_data.json' \ --prompt_template 'law_template' \
--prompt_template 'law_template' --infer_data_path './resources/example_infer_data.json'