Add data dir in src

This commit is contained in:
songpx
2023-05-16 23:16:08 +08:00
parent 479a9e26fe
commit af0aecf482
5 changed files with 19 additions and 102 deletions

View File

@ -1,50 +0,0 @@
import argparse
import openai
import yaml
import random
def return_random_prompt():
system_prompt = "你需要针对法条内容尽可能联想多样化的场景生成问答数据。我们将用于人工评估 ChatGPT 模型对指令的完成情况。要求:\n"
# generate random tasks
system_prompt += "1. 结合真实问题,表述多样化。\n"
# other requirements
system_prompt += "2. 如果遇到无法处理的指令(只靠文本无法回答),给出无法处理的回复。\n"
system_prompt += "3. 除非特别要求,请使用中文,指令可以是命令句、疑问句、或其他合适的类型。\n"
system_prompt += "4. <Reference>:违反本法规定,对妇女实施性骚扰的,由公安机关给予批评教育或者出具告诫书,并由所在单位依法给予处分。\n学校、用人单位违反本法规定,未采取必要措施预防和制止性骚扰,造成妇女权益受到侵害或者社会影响恶劣的,由上级机关或者主管部门责令改正;拒不改正或者情节严重的,依法对直接负责的主管人员和其他直接责任人员给予处分。\n"
system_prompt += "5. <input>是结合法条内容联想到的真实场景下的问题。要求该场景下存在违法者和受害人\n"
system_prompt += "6. <output>是结合法条内容对该问题的适当且真实的回应,不能只回复答应或拒绝请求。尽可能地指明违法行为可能遭受的惩罚,并向受害者提出维权建议。\n\n"
system_prompt += "请给出满足条件的10条JSON格式数据\n"
return system_prompt
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--cfg_path', default='../config.yaml', type=str)
parser.add_argument('--save_path', default='./output.json', type=str)
args = parser.parse_args()
with open(args.cfg_path, 'r') as f:
cfg = yaml.load(f, Loader=yaml.FullLoader)
openai.api_key = cfg['API_KEY']
openai.api_base = cfg['API_BASE_URL']
output_file = open(args.save_path, 'w')
# number of data to generate (each prompt contains 20 JSON-formatted data)
# TODO: 改成流式的,不然会中途断掉
MAX_EPOCHS = 1
for k in range(MAX_EPOCHS):
response = openai.ChatCompletion.create(
# here we use `gpt-3.5-turbo` model, while Stanford-Alpaca uses `text-davinci-003`
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": return_random_prompt()},
]
)
output_file.write(response["choices"][0]["message"]["content"] + '\n')
output_file.close()

View File

@ -1,51 +0,0 @@
import argparse
import openai
import yaml
import sys
import random
def return_random_prompt():
system_prompt = "你需要针对输入尽可能给出多样化的任务指令和对应的回答。我们将用于人工评估ChatGPT模型对指令的完成情况。要求:\n"
# generate random tasks
task_list = ["开放式生成", "分类", "问答", "编辑", "摘要", "写作", "分析", "抽取"]
system_prompt += "1. 表述多样化,结合真实问题;指令类型多样化,例如:" + "".join(random.sample(task_list, 7)) + "等。\n"
# other requirements
system_prompt += "2. 如果遇到无法处理的指令(只靠文本无法回答),给出无法处理的回复。\n"
system_prompt += "3. 除非特别要求,请使用中文,指令可以是命令句、疑问句、或其他合适的类型。\n"
system_prompt += "4. <input>是:'第十三条 一切危害国家主权、领土完整和安全,分裂国家、颠覆人民民主专政的政权和推翻社会主义制度,破坏社会秩序和经济秩序,侵犯国有财产或者劳动群众集体所有的财产,侵犯公民私人所有的财产,侵犯公民的人身权利、民主权利和其他权利,以及其他危害社会的行为,依照法律应当受刑罚处罚的,都是犯罪,但是情节显著轻微危害不大的,不认为是犯罪。'"
system_prompt += "5. <output>应该是对指令的适当且真实的回应,不能只回复答应或拒绝请求。如果需要额外信息才能回复时,请努力预测用户意图并尝试回复。<output>的内容应少于" + str(random.randint(128, 512)) + "字。\n\n"
system_prompt += "请给出满足条件的20条JSON格式数据\n"
return system_prompt
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--cfg_path', default='../config.yaml', type=str)
parser.add_argument('--save_path', default='./output.json', type=str)
args = parser.parse_args()
with open(args.cfg_path, 'r') as f:
cfg = yaml.load(f, Loader=yaml.FullLoader)
openai.api_key = cfg['API_KEY']
openai.api_base = cfg['API_BASE_URL']
output_file = open(args.save_path, 'w')
# number of data to generate (each prompt contains 20 JSON-formatted data)
# TODO: 改成流式的,不然会中途断掉
MAX_EPOCHS = 1
for k in range(MAX_EPOCHS):
response = openai.ChatCompletion.create(
# here we use `gpt-3.5-turbo` model, while Stanford-Alpaca uses `text-davinci-003`
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": return_random_prompt()},
]
)
output_file.write(response["choices"][0]["message"]["content"] + '\n')
output_file.close()