40 lines
1.7 KiB
Python
40 lines
1.7 KiB
Python
from langchain.vectorstores.faiss import FAISS
|
|
from langchain.embeddings import HuggingFaceEmbeddings
|
|
import sentence_transformers
|
|
import numpy as np
|
|
import re, os
|
|
|
|
__all__ = ["Knowledge"]
|
|
|
|
class Knowledge(object):
|
|
def __init__(self, knowledge_path="./knowledge", embedding_name='GanymedeNil/text2vec-large-chinese') -> None:
|
|
self.embeddings = HuggingFaceEmbeddings(model_name=embedding_name)
|
|
self.knowledge = FAISS.load_local(knowledge_path, embeddings=self.embeddings)
|
|
# EMBEDDINGS.client = sentence_transformers.SentenceTransformer("/home/wnjxyk/Projects/wenda/model/text2vec-large-chinese", device="cuda")
|
|
|
|
def render_index(self, idx, score):
|
|
indices = self.knowledge.index_to_docstore_id[idx]
|
|
doc = self.knowledge.docstore.search(indices)
|
|
meta_content = doc.metadata
|
|
return {"title": meta_content['source'], "score": int(score), "content": meta_content["content"]}
|
|
|
|
def query_prompt(self, prompt, topk=3, threshold=700):
|
|
embedding = self.knowledge.embedding_function(prompt)
|
|
scores, indices = self.knowledge.index.search(np.array([embedding], dtype=np.float32), topk)
|
|
docs = []
|
|
for j, i in enumerate(indices[0]):
|
|
if i == -1: continue
|
|
if scores[0][j] > threshold: continue
|
|
docs.append(self.render_index(i, scores[0][j]))
|
|
return docs
|
|
|
|
def get_response(self, output: str) -> str:
|
|
first, res = True, ""
|
|
for doc in output:
|
|
if not first: res += "---\n"
|
|
res += doc["content"]
|
|
first = False
|
|
return res
|
|
|
|
# knowledge = Knowledge()
|
|
# print(knowledge.get_response(knowledge.query_prompt("酒后驾车"))) |