diff --git a/tutorial-contents/403_RNN_regressor.py b/tutorial-contents/403_RNN_regressor.py index c8b19ca..5ef4666 100644 --- a/tutorial-contents/403_RNN_regressor.py +++ b/tutorial-contents/403_RNN_regressor.py @@ -20,8 +20,8 @@ INPUT_SIZE = 1 # rnn input size LR = 0.02 # learning rate # show data -steps = np.linspace(0, np.pi*2, 100, dtype=np.float32) -x_np = np.sin(steps) # float32 for converting torch FloatTensor +steps = np.linspace(0, np.pi*2, 100, dtype=np.float32) # float32 for converting torch FloatTensor +x_np = np.sin(steps) y_np = np.cos(steps) plt.plot(steps, y_np, 'r-', label='target (cos)') plt.plot(steps, x_np, 'b-', label='input (sin)') @@ -71,8 +71,8 @@ plt.ion() # continuously plot for step in range(100): start, end = step * np.pi, (step+1)*np.pi # time range # use sin predicts cos - steps = np.linspace(start, end, TIME_STEP, dtype=np.float32) - x_np = np.sin(steps) # float32 for converting torch FloatTensor + steps = np.linspace(start, end, TIME_STEP, dtype=np.float32) # float32 for converting torch FloatTensor + x_np = np.sin(steps) y_np = np.cos(steps) x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis]) # shape (batch, time_step, input_size)