This commit is contained in:
Morvan Zhou
2017-06-11 15:49:22 +10:00
committed by Morvan Zhou
parent d6f7fbf4cf
commit 3fc6f4e4a0
3 changed files with 3 additions and 3 deletions

View File

@ -63,7 +63,7 @@ for t in range(100):
pred_y = prediction.data.numpy().squeeze() pred_y = prediction.data.numpy().squeeze()
target_y = y.data.numpy() target_y = y.data.numpy()
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn') plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
accuracy = sum(pred_y == target_y)/200 accuracy = sum(pred_y == target_y)/200.
plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'}) plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1) plt.pause(0.1)

View File

@ -98,7 +98,7 @@ for epoch in range(EPOCH):
if step % 50 == 0: if step % 50 == 0:
test_output = cnn(test_x) test_output = cnn(test_x)
pred_y = torch.max(test_output, 1)[1].data.squeeze() pred_y = torch.max(test_output, 1)[1].data.squeeze()
accuracy = sum(pred_y == test_y) / test_y.size(0) accuracy = sum(pred_y == test_y) / float(test_y.size(0))
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0], '| test accuracy: %.2f' % accuracy) print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0], '| test accuracy: %.2f' % accuracy)

View File

@ -97,7 +97,7 @@ for epoch in range(EPOCH):
if step % 50 == 0: if step % 50 == 0:
test_output = rnn(test_x) # (samples, time_step, input_size) test_output = rnn(test_x) # (samples, time_step, input_size)
pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze() pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
accuracy = sum(pred_y == test_y) / test_y.size accuracy = sum(pred_y == test_y) / float(test_y.size)
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0], '| test accuracy: %.2f' % accuracy) print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0], '| test accuracy: %.2f' % accuracy)
# print 10 predictions from test data # print 10 predictions from test data