edit
This commit is contained in:
@ -19,8 +19,8 @@ x0 = torch.normal(2*n_data, 1) # class0 x data (tensor), shape=(100, 2)
|
||||
y0 = torch.zeros(100) # class0 y data (tensor), shape=(100, 1)
|
||||
x1 = torch.normal(-2*n_data, 1) # class1 x data (tensor), shape=(100, 2)
|
||||
y1 = torch.ones(100) # class1 y data (tensor), shape=(100, 1)
|
||||
x = torch.cat((x0, x1), 0).type(torch.FloatTensor) # FloatTensor = 32-bit floating
|
||||
y = torch.cat((y0, y1), ).type(torch.LongTensor) # LongTensor = 64-bit integer
|
||||
x = torch.cat((x0, x1), 0).type(torch.FloatTensor) # shape (200, 2) FloatTensor = 32-bit floating
|
||||
y = torch.cat((y0, y1), ).type(torch.LongTensor) # shape (200,) LongTensor = 64-bit integer
|
||||
|
||||
# torch can only train on Variable, so convert them to Variable
|
||||
x, y = Variable(x), Variable(y)
|
||||
@ -44,7 +44,7 @@ net = Net(n_feature=2, n_hidden=10, n_output=2) # define the network
|
||||
print(net) # net architecture
|
||||
|
||||
optimizer = torch.optim.SGD(net.parameters(), lr=0.02)
|
||||
loss_func = torch.nn.CrossEntropyLoss() # the target label is not one-hotted
|
||||
loss_func = torch.nn.CrossEntropyLoss() # the target label is NOT an one-hotted
|
||||
|
||||
plt.ion() # something about plotting
|
||||
plt.show()
|
||||
|
||||
Reference in New Issue
Block a user