循环的最后一个元素和下一次循环的第一个元素时间不连续

steps = np.linspace(start, end, TIME_STEP, dtype=np.float32)
其中默认参数endpoint=True,也就是说这一次循环的最后一个元素和下一次循环的第一个元素是一致的,按照RNN传递的state的特点,应该保证输入是关于时间连续的,所以不应该有相邻的时间是一致的情况,这可能不是想要的,所以我认为这里是一个小bug。
This commit is contained in:
Hui
2018-11-30 21:49:23 +08:00
committed by GitHub
parent 51c6c660c7
commit 7f0e442d8b

View File

@ -77,7 +77,7 @@ plt.ion() # continuously plot
for step in range(100): for step in range(100):
start, end = step * np.pi, (step+1)*np.pi # time range start, end = step * np.pi, (step+1)*np.pi # time range
# use sin predicts cos # use sin predicts cos
steps = np.linspace(start, end, TIME_STEP, dtype=np.float32) # float32 for converting torch FloatTensor steps = np.linspace(start, end, TIME_STEP, dtype=np.float32, endpoint=False) # float32 for converting torch FloatTensor
x_np = np.sin(steps) x_np = np.sin(steps)
y_np = np.cos(steps) y_np = np.cos(steps)