Merge pull request #52 from keineahnung2345/update-203-activation
update to torch 0.4
This commit is contained in:
@ -3,7 +3,7 @@ View more, visit my tutorial page: https://morvanzhou.github.io/tutorials/
|
||||
My Youtube Channel: https://www.youtube.com/user/MorvanZhou
|
||||
|
||||
Dependencies:
|
||||
torch: 0.1.11
|
||||
torch: 0.4
|
||||
matplotlib
|
||||
"""
|
||||
import torch
|
||||
@ -17,12 +17,11 @@ x = Variable(x)
|
||||
x_np = x.data.numpy() # numpy array for plotting
|
||||
|
||||
# following are popular activation functions
|
||||
y_relu = F.relu(x).data.numpy()
|
||||
y_sigmoid = F.sigmoid(x).data.numpy()
|
||||
y_tanh = F.tanh(x).data.numpy()
|
||||
y_softplus = F.softplus(x).data.numpy()
|
||||
# y_softmax = F.softmax(x) softmax is a special kind of activation function, it is about probability
|
||||
|
||||
y_relu = torch.relu(x).data.numpy()
|
||||
y_sigmoid = torch.sigmoid(x).data.numpy()
|
||||
y_tanh = torch.tanh(x).data.numpy()
|
||||
y_softplus = F.softplus(x).data.numpy() # there's no softplus in torch
|
||||
# y_softmax = torch.softmax(x, dim=0).data.numpy() softmax is a special kind of activation function, it is about probability
|
||||
|
||||
# plt to visualize these activation function
|
||||
plt.figure(1, figsize=(8, 6))
|
||||
|
||||
Reference in New Issue
Block a user