update to torch 0.4
This commit is contained in:
@ -3,13 +3,12 @@ View more, visit my tutorial page: https://morvanzhou.github.io/tutorials/
|
||||
My Youtube Channel: https://www.youtube.com/user/MorvanZhou
|
||||
|
||||
Dependencies:
|
||||
torch: 0.1.11
|
||||
torch: 0.4
|
||||
matplotlib
|
||||
"""
|
||||
import torch
|
||||
import torch.utils.data as Data
|
||||
import torch.nn.functional as F
|
||||
from torch.autograd import Variable
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# torch.manual_seed(1) # reproducible
|
||||
@ -27,7 +26,7 @@ plt.scatter(x.numpy(), y.numpy())
|
||||
plt.show()
|
||||
|
||||
# put dateset into torch dataset
|
||||
torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y)
|
||||
torch_dataset = Data.TensorDataset(x, y)
|
||||
loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,)
|
||||
|
||||
|
||||
@ -64,17 +63,14 @@ if __name__ == '__main__':
|
||||
# training
|
||||
for epoch in range(EPOCH):
|
||||
print('Epoch: ', epoch)
|
||||
for step, (batch_x, batch_y) in enumerate(loader): # for each training step
|
||||
b_x = Variable(batch_x)
|
||||
b_y = Variable(batch_y)
|
||||
|
||||
for step, (b_x, b_y) in enumerate(loader): # for each training step
|
||||
for net, opt, l_his in zip(nets, optimizers, losses_his):
|
||||
output = net(b_x) # get output for every net
|
||||
loss = loss_func(output, b_y) # compute loss for every net
|
||||
opt.zero_grad() # clear gradients for next train
|
||||
loss.backward() # backpropagation, compute gradients
|
||||
opt.step() # apply gradients
|
||||
l_his.append(loss.data[0]) # loss recoder
|
||||
l_his.append(loss.data.numpy()) # loss recoder
|
||||
|
||||
labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
|
||||
for i, l_his in enumerate(losses_his):
|
||||
|
||||
Reference in New Issue
Block a user