update to torch 0.4
This commit is contained in:
@ -3,13 +3,12 @@ View more, visit my tutorial page: https://morvanzhou.github.io/tutorials/
|
||||
My Youtube Channel: https://www.youtube.com/user/MorvanZhou
|
||||
|
||||
Dependencies:
|
||||
torch: 0.1.11
|
||||
torch: 0.4
|
||||
matplotlib
|
||||
numpy
|
||||
"""
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.autograd import Variable
|
||||
import torch.utils.data as Data
|
||||
import torchvision
|
||||
import matplotlib.pyplot as plt
|
||||
@ -87,15 +86,14 @@ f, a = plt.subplots(2, N_TEST_IMG, figsize=(5, 2))
|
||||
plt.ion() # continuously plot
|
||||
|
||||
# original data (first row) for viewing
|
||||
view_data = Variable(train_data.train_data[:N_TEST_IMG].view(-1, 28*28).type(torch.FloatTensor)/255.)
|
||||
view_data = train_data.train_data[:N_TEST_IMG].view(-1, 28*28).type(torch.FloatTensor)/255.
|
||||
for i in range(N_TEST_IMG):
|
||||
a[0][i].imshow(np.reshape(view_data.data.numpy()[i], (28, 28)), cmap='gray'); a[0][i].set_xticks(()); a[0][i].set_yticks(())
|
||||
|
||||
for epoch in range(EPOCH):
|
||||
for step, (x, y) in enumerate(train_loader):
|
||||
b_x = Variable(x.view(-1, 28*28)) # batch x, shape (batch, 28*28)
|
||||
b_y = Variable(x.view(-1, 28*28)) # batch y, shape (batch, 28*28)
|
||||
b_label = Variable(y) # batch label
|
||||
for step, (x, b_label) in enumerate(train_loader):
|
||||
b_x = x.view(-1, 28*28) # batch x, shape (batch, 28*28)
|
||||
b_y = x.view(-1, 28*28) # batch y, shape (batch, 28*28)
|
||||
|
||||
encoded, decoded = autoencoder(b_x)
|
||||
|
||||
@ -105,7 +103,7 @@ for epoch in range(EPOCH):
|
||||
optimizer.step() # apply gradients
|
||||
|
||||
if step % 100 == 0:
|
||||
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0])
|
||||
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy())
|
||||
|
||||
# plotting decoded image (second row)
|
||||
_, decoded_data = autoencoder(view_data)
|
||||
@ -119,7 +117,7 @@ plt.ioff()
|
||||
plt.show()
|
||||
|
||||
# visualize in 3D plot
|
||||
view_data = Variable(train_data.train_data[:200].view(-1, 28*28).type(torch.FloatTensor)/255.)
|
||||
view_data = train_data.train_data[:200].view(-1, 28*28).type(torch.FloatTensor)/255.
|
||||
encoded_data, _ = autoencoder(view_data)
|
||||
fig = plt.figure(2); ax = Axes3D(fig)
|
||||
X, Y, Z = encoded_data.data[:, 0].numpy(), encoded_data.data[:, 1].numpy(), encoded_data.data[:, 2].numpy()
|
||||
|
||||
Reference in New Issue
Block a user