move files
This commit is contained in:
49
tutorial-contents/203_activation.py
Normal file
49
tutorial-contents/203_activation.py
Normal file
@ -0,0 +1,49 @@
|
||||
"""
|
||||
Know more, visit 莫烦Python: https://morvanzhou.github.io/tutorials/
|
||||
My Youtube Channel: https://www.youtube.com/user/MorvanZhou
|
||||
|
||||
Dependencies:
|
||||
torch: 0.1.11
|
||||
matplotlib
|
||||
"""
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.autograd import Variable
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# fake data
|
||||
x = torch.linspace(-5, 5, 200) # x data (tensor), shape=(100, 1)
|
||||
x = Variable(x)
|
||||
x_np = x.data.numpy() # numpy array for plotting
|
||||
|
||||
# following are popular activation functions
|
||||
y_relu = F.relu(x).data.numpy()
|
||||
y_sigmoid = F.sigmoid(x).data.numpy()
|
||||
y_tanh = F.tanh(x).data.numpy()
|
||||
y_softplus = F.softplus(x).data.numpy()
|
||||
# y_softmax = F.softmax(x) softmax is a special kind of activation function, it is about probability
|
||||
|
||||
|
||||
# plt to visualize these activation function
|
||||
plt.figure(1, figsize=(8, 6))
|
||||
plt.subplot(221)
|
||||
plt.plot(x_np, y_relu, c='red', label='relu')
|
||||
plt.ylim((-1, 5))
|
||||
plt.legend(loc='best')
|
||||
|
||||
plt.subplot(222)
|
||||
plt.plot(x_np, y_sigmoid, c='red', label='sigmoid')
|
||||
plt.ylim((-0.2, 1.2))
|
||||
plt.legend(loc='best')
|
||||
|
||||
plt.subplot(223)
|
||||
plt.plot(x_np, y_tanh, c='red', label='tanh')
|
||||
plt.ylim((-1.2, 1.2))
|
||||
plt.legend(loc='best')
|
||||
|
||||
plt.subplot(224)
|
||||
plt.plot(x_np, y_softplus, c='red', label='softplus')
|
||||
plt.ylim((-0.2, 6))
|
||||
plt.legend(loc='best')
|
||||
|
||||
plt.show()
|
||||
Reference in New Issue
Block a user