move files
This commit is contained in:
85
tutorial-contents/306_optimizer.py
Normal file
85
tutorial-contents/306_optimizer.py
Normal file
@ -0,0 +1,85 @@
|
||||
"""
|
||||
Know more, visit 莫烦Python: https://morvanzhou.github.io/tutorials/
|
||||
My Youtube Channel: https://www.youtube.com/user/MorvanZhou
|
||||
|
||||
Dependencies:
|
||||
torch: 0.1.11
|
||||
matplotlib
|
||||
"""
|
||||
import torch
|
||||
import torch.utils.data as Data
|
||||
import torch.nn.functional as F
|
||||
from torch.autograd import Variable
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
torch.manual_seed(1) # reproducible
|
||||
|
||||
LR = 0.01
|
||||
BATCH_SIZE = 32
|
||||
EPOCH = 12
|
||||
|
||||
# fake dataset
|
||||
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
|
||||
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
|
||||
|
||||
# plot dataset
|
||||
plt.scatter(x.numpy(), y.numpy())
|
||||
plt.show()
|
||||
|
||||
# put dateset into torch dataset
|
||||
torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y)
|
||||
loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,)
|
||||
|
||||
|
||||
# default network
|
||||
class Net(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.hidden = torch.nn.Linear(1, 20) # hidden layer
|
||||
self.predict = torch.nn.Linear(20, 1) # output layer
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.hidden(x)) # activation function for hidden layer
|
||||
x = self.predict(x) # linear output
|
||||
return x
|
||||
|
||||
# different nets
|
||||
net_SGD = Net()
|
||||
net_Momentum = Net()
|
||||
net_RMSprop = Net()
|
||||
net_Adam = Net()
|
||||
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]
|
||||
|
||||
# different optimizers
|
||||
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
|
||||
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
|
||||
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
|
||||
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
|
||||
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]
|
||||
|
||||
loss_func = torch.nn.MSELoss()
|
||||
losses_his = [[], [], [], []] # record loss
|
||||
|
||||
# training
|
||||
for epoch in range(EPOCH):
|
||||
print('Epoch: ', epoch)
|
||||
for step, (batch_x, batch_y) in enumerate(loader): # for each training step
|
||||
b_x = Variable(batch_x)
|
||||
b_y = Variable(batch_y)
|
||||
|
||||
for net, opt, l_his in zip(nets, optimizers, losses_his):
|
||||
output = net(b_x) # get output for every net
|
||||
loss = loss_func(output, b_y) # compute loss for every net
|
||||
opt.zero_grad() # clear gradients for next train
|
||||
loss.backward() # backpropagation, compute gradients
|
||||
opt.step() # apply gradients
|
||||
l_his.append(loss.data[0]) # loss recoder
|
||||
|
||||
labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
|
||||
for i, l_his in enumerate(losses_his):
|
||||
plt.plot(l_his, label=labels[i])
|
||||
plt.legend(loc='best')
|
||||
plt.xlabel('Steps')
|
||||
plt.ylabel('Loss')
|
||||
plt.ylim((0, 0.2))
|
||||
plt.show()
|
||||
Reference in New Issue
Block a user