move files
This commit is contained in:
142
tutorial-contents/404_autoencoder.py
Normal file
142
tutorial-contents/404_autoencoder.py
Normal file
@ -0,0 +1,142 @@
|
||||
"""
|
||||
Know more, visit 莫烦Python: https://morvanzhou.github.io/tutorials/
|
||||
My Youtube Channel: https://www.youtube.com/user/MorvanZhou
|
||||
|
||||
Dependencies:
|
||||
torch: 0.1.11
|
||||
matplotlib
|
||||
numpy
|
||||
"""
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.autograd import Variable
|
||||
import torch.utils.data as Data
|
||||
import torchvision
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
from matplotlib import cm
|
||||
import numpy as np
|
||||
|
||||
|
||||
torch.manual_seed(1) # reproducible
|
||||
|
||||
# Hyper Parameters
|
||||
EPOCH = 10
|
||||
BATCH_SIZE = 64
|
||||
LR = 0.005 # learning rate
|
||||
DOWNLOAD_MNIST = False
|
||||
N_TEST_IMG = 5
|
||||
|
||||
# Mnist digits dataset
|
||||
train_data = torchvision.datasets.MNIST(
|
||||
root='./mnist/',
|
||||
train=True, # this is training data
|
||||
transform=torchvision.transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to
|
||||
# torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
|
||||
download=DOWNLOAD_MNIST, # download it if you don't have it
|
||||
)
|
||||
|
||||
# plot one example
|
||||
print(train_data.train_data.size()) # (60000, 28, 28)
|
||||
print(train_data.train_labels.size()) # (60000)
|
||||
# plt.imshow(train_data.train_data[2].numpy(), cmap='gray')
|
||||
# plt.title('%i' % train_data.train_labels[2])
|
||||
# plt.show()
|
||||
|
||||
# Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
|
||||
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
|
||||
|
||||
|
||||
class AutoEncoder(nn.Module):
|
||||
def __init__(self):
|
||||
super(AutoEncoder, self).__init__()
|
||||
|
||||
self.encoder = nn.Sequential(
|
||||
nn.Linear(28*28, 128),
|
||||
nn.Tanh(),
|
||||
nn.Linear(128, 64),
|
||||
nn.Tanh(),
|
||||
nn.Linear(64, 12),
|
||||
nn.Tanh(),
|
||||
nn.Linear(12, 3), # compress to 3 features which can be visualized in plt
|
||||
)
|
||||
self.decoder = nn.Sequential(
|
||||
nn.Linear(3, 12),
|
||||
nn.Tanh(),
|
||||
nn.Linear(12, 64),
|
||||
nn.Tanh(),
|
||||
nn.Linear(64, 128),
|
||||
nn.Tanh(),
|
||||
nn.Linear(128, 28*28),
|
||||
nn.Sigmoid(), # compress to a range (0, 1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
encoded = self.encoder(x)
|
||||
decoded = self.decoder(encoded)
|
||||
return encoded, decoded
|
||||
|
||||
|
||||
autoencoder = AutoEncoder()
|
||||
|
||||
optimizer = torch.optim.Adam(autoencoder.parameters(), lr=LR)
|
||||
loss_func = nn.MSELoss()
|
||||
|
||||
# initialize figure
|
||||
f, a = plt.subplots(2, N_TEST_IMG, figsize=(5, 2))
|
||||
plt.ion() # continuously plot
|
||||
plt.show()
|
||||
|
||||
# original data (first row) for viewing
|
||||
view_data = Variable(train_data.train_data[:N_TEST_IMG].view(-1, 28*28).type(torch.FloatTensor)/255.)
|
||||
for i in range(N_TEST_IMG):
|
||||
a[0][i].imshow(np.reshape(view_data.data.numpy()[i], (28, 28)), cmap='gray')
|
||||
a[0][i].set_xticks(())
|
||||
a[0][i].set_yticks(())
|
||||
|
||||
for epoch in range(EPOCH):
|
||||
for step, (x, y) in enumerate(train_loader):
|
||||
b_x = Variable(x.view(-1, 28*28)) # batch x, shape (batch, 28*28)
|
||||
b_y = Variable(x.view(-1, 28*28)) # batch y, shape (batch, 28*28)
|
||||
b_label = Variable(y) # batch label
|
||||
|
||||
encoded, decoded = autoencoder(b_x)
|
||||
|
||||
loss = loss_func(decoded, b_y) # mean square error
|
||||
optimizer.zero_grad() # clear gradients for this training step
|
||||
loss.backward() # backpropagation, compute gradients
|
||||
optimizer.step() # apply gradients
|
||||
|
||||
if step % 100 == 0:
|
||||
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0])
|
||||
|
||||
# plotting decoded image (second row)
|
||||
_, decoded_data = autoencoder(view_data)
|
||||
for i in range(N_TEST_IMG):
|
||||
a[1][i].clear()
|
||||
a[1][i].imshow(np.reshape(decoded_data.data.numpy()[i], (28, 28)), cmap='gray')
|
||||
a[1][i].set_xticks(())
|
||||
a[1][i].set_yticks(())
|
||||
plt.draw()
|
||||
plt.pause(0.05)
|
||||
|
||||
plt.ioff()
|
||||
plt.show()
|
||||
|
||||
# visualize in 3D plot
|
||||
view_data = Variable(train_data.train_data[:200].view(-1, 28*28).type(torch.FloatTensor)/255.)
|
||||
encoded_data, _ = autoencoder(view_data)
|
||||
fig = plt.figure(2)
|
||||
ax = Axes3D(fig)
|
||||
X = encoded_data.data[:, 0].numpy()
|
||||
Y = encoded_data.data[:, 1].numpy()
|
||||
Z = encoded_data.data[:, 2].numpy()
|
||||
values = train_data.train_labels[:200].numpy()
|
||||
for x, y, z, s in zip(X, Y, Z, values):
|
||||
c = cm.rainbow(int(255*s/9))
|
||||
ax.text(x, y, z, s, backgroundcolor=c)
|
||||
ax.set_xlim(X.min(), X.max())
|
||||
ax.set_ylim(Y.min(), Y.max())
|
||||
ax.set_zlim(Z.min(), Z.max())
|
||||
plt.show()
|
||||
|
||||
Reference in New Issue
Block a user