move files
This commit is contained in:
84
tutorial-contents/502_GPU.py
Normal file
84
tutorial-contents/502_GPU.py
Normal file
@ -0,0 +1,84 @@
|
||||
"""
|
||||
Know more, visit 莫烦Python: https://morvanzhou.github.io/tutorials/
|
||||
My Youtube Channel: https://www.youtube.com/user/MorvanZhou
|
||||
|
||||
Dependencies:
|
||||
torch: 0.1.11
|
||||
torchvision
|
||||
"""
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.autograd import Variable
|
||||
import torch.utils.data as Data
|
||||
import torchvision
|
||||
|
||||
torch.manual_seed(1)
|
||||
|
||||
EPOCH = 1
|
||||
BATCH_SIZE = 50
|
||||
LR = 0.001
|
||||
DOWNLOAD_MNIST = False
|
||||
|
||||
train_data = torchvision.datasets.MNIST(root='./mnist/', train=True, transform=torchvision.transforms.ToTensor(), download=DOWNLOAD_MNIST,)
|
||||
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
|
||||
|
||||
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
|
||||
|
||||
# !!!!!!!! Change in here !!!!!!!!! #
|
||||
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1)).type(torch.FloatTensor)[:2000].cuda()/255. # Tensor on GPU
|
||||
test_y = test_data.test_labels[:2000]
|
||||
|
||||
|
||||
class CNN(nn.Module):
|
||||
def __init__(self):
|
||||
super(CNN, self).__init__()
|
||||
self.conv1 = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2,),
|
||||
nn.ReLU(), nn.MaxPool2d(kernel_size=2),)
|
||||
self.conv2 = nn.Sequential(nn.Conv2d(16, 32, 5, 1, 2), nn.ReLU(), nn.MaxPool2d(2),)
|
||||
self.out = nn.Linear(32 * 7 * 7, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.conv2(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
output = self.out(x)
|
||||
return output
|
||||
|
||||
cnn = CNN()
|
||||
|
||||
# !!!!!!!! Change in here !!!!!!!!! #
|
||||
cnn.cuda() # Moves all model parameters and buffers to the GPU.
|
||||
|
||||
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)
|
||||
loss_func = nn.CrossEntropyLoss()
|
||||
|
||||
for epoch in range(EPOCH):
|
||||
for step, (x, y) in enumerate(train_loader):
|
||||
|
||||
# !!!!!!!! Change in here !!!!!!!!! #
|
||||
b_x = Variable(x).cuda() # Tensor on GPU
|
||||
b_y = Variable(y).cuda() # Tensor on GPU
|
||||
|
||||
output = cnn(b_x)
|
||||
loss = loss_func(output, b_y)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
if step % 50 == 0:
|
||||
test_output = cnn(test_x)
|
||||
|
||||
# !!!!!!!! Change in here !!!!!!!!! #
|
||||
pred_y = torch.max(test_output, 1)[1].cup().data.squeeze() # Move to CPU
|
||||
|
||||
accuracy = sum(pred_y == test_y) / test_y.size(0)
|
||||
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0], '| test accuracy: %.2f' % accuracy)
|
||||
|
||||
|
||||
test_output = cnn(test_x[:10])
|
||||
|
||||
# !!!!!!!! Change in here !!!!!!!!! #
|
||||
pred_y = torch.max(test_output, 1)[1].cup().data.numpy().squeeze() # Move to CPU
|
||||
|
||||
print(pred_y, 'prediction number')
|
||||
print(test_y[:10].numpy(), 'real number')
|
||||
Reference in New Issue
Block a user