@ -26,7 +26,7 @@ test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
|
|||||||
|
|
||||||
# !!!!!!!! Change in here !!!!!!!!! #
|
# !!!!!!!! Change in here !!!!!!!!! #
|
||||||
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1)).type(torch.FloatTensor)[:2000].cuda()/255. # Tensor on GPU
|
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1)).type(torch.FloatTensor)[:2000].cuda()/255. # Tensor on GPU
|
||||||
test_y = test_data.test_labels[:2000]
|
test_y = test_data.test_labels[:2000].cuda()
|
||||||
|
|
||||||
|
|
||||||
class CNN(nn.Module):
|
class CNN(nn.Module):
|
||||||
@ -69,7 +69,7 @@ for epoch in range(EPOCH):
|
|||||||
test_output = cnn(test_x)
|
test_output = cnn(test_x)
|
||||||
|
|
||||||
# !!!!!!!! Change in here !!!!!!!!! #
|
# !!!!!!!! Change in here !!!!!!!!! #
|
||||||
pred_y = torch.max(test_output, 1)[1].cup().data.squeeze() # Move to CPU
|
pred_y = torch.max(test_output, 1)[1].cuda().data.squeeze() # Move to CPU
|
||||||
|
|
||||||
accuracy = sum(pred_y == test_y) / test_y.size(0)
|
accuracy = sum(pred_y == test_y) / test_y.size(0)
|
||||||
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0], '| test accuracy: %.2f' % accuracy)
|
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0], '| test accuracy: %.2f' % accuracy)
|
||||||
@ -78,7 +78,7 @@ for epoch in range(EPOCH):
|
|||||||
test_output = cnn(test_x[:10])
|
test_output = cnn(test_x[:10])
|
||||||
|
|
||||||
# !!!!!!!! Change in here !!!!!!!!! #
|
# !!!!!!!! Change in here !!!!!!!!! #
|
||||||
pred_y = torch.max(test_output, 1)[1].cup().data.numpy().squeeze() # Move to CPU
|
pred_y = torch.max(test_output, 1)[1].cuda().data.squeeze() # Move to CPU
|
||||||
|
|
||||||
print(pred_y, 'prediction number')
|
print(pred_y, 'prediction number')
|
||||||
print(test_y[:10].numpy(), 'real number')
|
print(test_y[:10], 'real number')
|
||||||
|
|||||||
Reference in New Issue
Block a user